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ABSTRACT 

 
This work presents an analysis of the presence of arbitrage opportunities in the term 
structure of interest rates, through the estimation of the affine generalized Nelson-Siegel 

model with correction for no-arbitrage. We challenge the necessity of the condition of no-

arbitrage using the Brazilian term structure of interest rates by observing the interbank 
deposits (DI) contracts traded in the Mercantile and Futures Exchange (BM & 

FBOVESPA) in Brazil between 2007 and 2009. 

To verify the necessity of imposing no-arbitrage restrictions, we propose an analysis 

using Bayesian methods of estimation and testing of this model. We also discuss the 
estimation procedure in the presence of an irregular maturity structure. Our chosen 

methodology is especially relevant for emerging markets, where the liquidity of emerging 

markets varies substantially over time, especially in periods of crises. The results of our 
analysis indicate that the no-arbitrage corrections are not necessary and that this model is 

an appropriate specification for this term structure of interest rates. 
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1. INTRODUCTION 

 

Among the models studied in the literature of term structure of interest rates there is a 

fundamental difference between purely statistical models and models that are based on no-

arbitrage conditions. The main reference among statistical models is the decomposition 

proposed by Litterman and Scheinkman (1991), which uses the method of principal 

components to obtain an orthogonal decomposition of the movements in the term structure of 

interest rates. The techniques used in these models allow for adjustments and forecasts of the 

yield curve, but these models are not consistent with the imposition of no-arbitrage conditions 

given by the theory of asset pricing.  

 

The imposition of no-arbitrage conditions not only ensure consistency with the pricing in the 

sense proposed by Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and 

Schachermayer (1994), but also affect the fit and model predictions. Ang and Piazzesi (2003) 

and Almeida and Vicente (2008) indicate that the imposition of no-arbitrage conditions leads 

to an improvement in the forecasts for the term structure.  

 

An alternative interpretation for this problem can be found in Duffee (2011), which indicates 

that in correctly specified affine models the imposition of no-arbitrage corrections is 
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irrelevant, and so the imposition of the no-arbitrage condition should not represent an 

improvement in the predictive potential or model fit. A similar interpretation is discussed in 

Joslin et al. (2011). In this interpretation no-arbitrage conditions are only relevant in the 

presence of misspecification problems, and thus the presence of arbitrage opportunities can be 

interpreted as diagnosis for misspecification problems in the models for the term structure of 

interest rates.  

 

Due the relevance of the topic, the purpose of this work is to dynamically model the term 

structure of interest rates in Brazil, based on the affine generalized dynamic Nelson-Siegel 

(AFDNS) proposed by Christensen et al. (2009), where the best of both traditional yield curve 

modeling techniques are combined: the affine no-arbitrage models and a version of the 

Nelson-Siegel model developed by Diebold and Li (2006). Through estimation of models 

with and without the no-arbitrage restrictions for this class of models, we propose a test based 

on Bayes Factors to check the validity of no-arbitrage conditions. This test is made possible 

by the use of a Bayesian estimation using Markov Chain Monte Carlo method, which enables 

mechanisms for obtaining finite sample distributions of parameters, latent factors and 

predictions of this model. We also discuss estimation procedures in the presence of an 

irregular maturity structure, which is necessary to avoid problems of contamination by 

arbitrage opportunities artificially created by interpolation procedures and temporal 

aggregation. 

 

This paper is structured into seven sections, including this introduction. The second section is 

a brief review of related works in term structure modeling. The next section presents the 

affine dynamic Nelson-Siegel analyzed. In the fourth section is presented a descriptive 

analysis of the data used and some stylized aspects of the term structure of interest rates in 

Brazil. In the following section we present the estimation results and the analysis of the 

results of this estimation. In section six we show the proposed test for the presence of no-

arbitrage. Finally, in section seven, are the final conclusions.  

 

2. MODELING THE TERM STRUCTURE OF INTEREST RATES 

  

Most models for the term structure of interest rates assume by construction that the observed 

rates are free of arbitrage opportunities. This hypothesis, however, is only consistent when 

these financial instruments are traded in large and liquid markets, for example, in the case of 

U.S. government debt securities. In this type of market, rational agents rapidly exploit 

arbitrage opportunities, and so the overall result is the consistency of observed prices with no-

arbitrage assumption.  

 

According to Diebold and Li (2006), in the last 25 years great advances in theoretical models 

for the term structure of interest rates have been made. Two major approaches for term 

structure models are rooted in the assumption of no-arbitrage and general equilibrium. Still, 

from the perspective of forecasting models, according to Diebold and Li (2006), despite the 

theoretical advances, little attention has been devoted to the practical problem of forecasting 

the yield curve. The no-arbitrage literature on the term structure models has little to infer on 

the dynamics of the yield curve or prediction, given that majority of the literature is focused 

primarily on fitting the term structure of forward rates at a given moment of time. 

 

The general equilibrium literature on the term structure of models generally focuses on the 

dynamics derived from the short-term interest rates, but the empirical results of general 
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equilibrium models, such as models of Vasicek (1977) and Cox et al. (1985) indicate that the 

in-sample fit and forecasting derived using these models are rather poor. 

 

In general, basically, it should be easy for a correctly specified model of yield curve dynamics 

to reproduce the stylized facts concerning the term structure of interest rates. Thus, as stated 

by Diebold and Li (2006), term structure models should summarize some of the most 

important stylized facts of the existing yield curves, which are: (i) the shape of the average 

yield curve is increasing and concave; (ii) the yield curve has various formats over time, due 

to variation of the estimated parameters for each factor; (iii) the dynamics of yields are 

persistent and the spreads less persistent; (iv) greater volatility of the yield curve in the short 

term;(v) higher persistence for long term yields. 

 

Nelson and Siegel (1987) proposed a basic static model for the term structure of interest rates 

now widespread in the financial market. Due to its ease of implementation and predictive 

power the model is also used by central banks, enabling an efficient way to fit the cross-

section part of the yield curve. 

 

The representation of this model is given by equation (2.1) below: 
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where y() is the vector with interest rates, observed at time t for the maturities  and 0, 1, 2 

and  are model parameters. 

 

To understand the evolution of the yield curve over time, i.e. the term structure, Diebold and 

Li (2006) made the previous model, given by equation (2.1), dynamic, by replacing the 

parameters with time-varying factors. Similar to the principal components developed by 

Litterman and Scheinkman (1991), the new parameters or factors assumed represent the level, 

slope, and curvature of the yield curve. 

 

The new proposal generates a dynamic yield curve modeled through the relationship of a 

three-dimensional parameter, which is represented by equation (2.2) below: 
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where yt() is the vector with the nominal rates of a security that pays no coupons in function 

of maturities  and 0t, 1t, 2t and  are the factors and may vary over time. Among them, 0t, 

1t and 2t represent, respectively, the components of level, slope, and curvature of interest 

rates. 

 

The level factor of the yield curve denotes the average of the rates charged for the different 

maturities. The second factor, the slope, shows if the shapes of the curve indicates an 

increasing or decreasing function of maturity, while the third factor, curvature, reflects the 

speed with which the curve is increasing or decreasing. Additionally, the decay parameter , 

which controls the shape (decay) of the curve, is usually kept constant but can vary over time 

in order to capture the instability of curves. 
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Other studies using the approach proposed by equation (2.2) accede to the widely recognized 

limitation of the model, whose fit is satisfactory only for shorter maturities. For longer-term 

rates, the model often provides a yield curve that becomes stable in the long term, a fact that 

is not consistent with the observed dynamic of long-term interest rates.  

 

An extension to the model characterized by equation (2.2) seeks to solve the above problem. 

This model produced by Svensson (1994) is a generalization of the model made by Nelson 

and Siegel (1987) and added one more factor of curvature to better adjust interest rates for 

long-term maturities. The representation of the extended version proposed by Svensson 

(1994), according to Christensen et al. (2009), now including the temporal dynamics is given 

by equation (2.3) below:  
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where yt() is the vector with the nominal rates, now with the factors 0t, 1t, 2t, 3t, 1t and 

2t.  

 

Other versions including additional factors are also used in literature, in particular the model 

with five factors used in Christensen et al. (2009). Several other generalizations and 

applications of these models have been proposed in the literature after the formulation of the 

dynamic Nelson-Siegel family presented in Diebold and Li (2006). Examples include the use 

of models with macroeconomic variables (macro-finance models), models with stochastic 

volatility structures, the use of these models to extract inflation expectations using indexed 

bonds, and many other applications. A detailed discussion of these topics can be found in the 

monograph by Diebold and Rudebusch (2013).  

 

3. THE AFFINE GENERALIZED DYNAMIC NELSON-SIEGEL MODEL 

 

The model of Nelson and Siegel (1987) is not consistent with no-arbitrage assumption, as 

pointed out by Filipovic (1999). There is only one restriction on the model of Svensson that is 

consistent with no-arbitrage, but this structure is too restrictive for practical use. However, as 

shown in Christensen et al. (2011) and Christensen et al. (2009), some modifications allow a 

similar class of models with the no-arbitrage property for the Nelson-Siegel and Svensson 

family of models, respectively. 

 

To obtain this family of arbitrage-free models, Christensen et al. (2009) use the structure of 

Affine Term Structure Models. This structure is useful, because it presents interesting 

analytical properties, such as the existence of analytical solutions for the pricing of assets and 

is characterized by a common framework that allows representing various other models 

studied in the literature, as shown by Dai and Singleton (2000). A detailed and didactic 

derivation of arbitrage-free Nelson-Siegel family models can be seen in the monograph of 

Diebold and Rudebusch (2013), in chapters 3 and 5. To enhance the interpretive power of the 

model they propose a simple function with just two factors, but discuss in detail the no-

arbitrage conditions and restrictions involved in this family of models with the imposition of 

conditions of consistency. 

 

Following Duffie and Kan (1996), we set the price of a zero coupon bond in period t with 

maturity T in the equivalent martingale measure Q to characterize the structure of affine 

models of the term structure (ATSM), given by: 
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where r(t) is the instantaneous interest rate (short rate). In this class of models r(t) is an affine 

function of a vector of state variables (latent factors) Xi(t): 
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where s are parameters and each Xi(t) is an affine diffusion given by the following stochastic 

differential equation: 
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with parameters  and . dW(t) represents a standard Brownian motion, and S(t) is a diagonal 

matrix with i-th element given by: 
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Duffie and Kan (1996) show this class of models, where the bond price is an again an affine 

function given by: 
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where A() and B() are derivations from the following system of Riccati ordinary differential 

equations: 
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To obtain an arbitrage-free Svensson family, Christensen et al. (2009) modify this affine 

structure by assuming that the short rate is given as the sum of the first three latent factors: 
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differential equations: 
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In this model according to equation (3.4), prices of zero-coupon bonds are given by the 

following expression: 
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where the terms B
i
(t,T) and C(t,T) are defined as the solutions to the following systems of 

ordinary differential equations: 
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In this formulation now the zero-coupon yields are given by:  (3.5) 
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which can be interpreted as the augmented Svensson curve, replacing notation it to X
.i
t for 

latent factors, with the addition of a no-arbitrage correction factor –C(t,T)/(T–t) given by the 

following expression: 
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where  denotes the covariance matrix of the latent factors. This correction factor (3.6) is a 

function of the variances of the latent factors and also of decay parameters of the model, all 

assumed to be constant
1
. 

 

An important point is that a no-arbitrage formulation needs a structure with five latent factors, 

implying additional slope and curvature factors in the Nelson-Siegel model. This specification 

also allows correcting the empirical failure in adjusting the long-term maturities using 

Nelson-Siegel class of models. According to Christensen et al. (2009), most models get a 

good fit only for short maturities, failing to adjust the longer maturities. Therefore, the 

initiative to include more latent factors, besides allowing the imposition of no-arbitrage 

correction, represents a gain in model fit. 

 

To verify the validity of no-arbitrage conditions, we estimate two versions of the model 

proposed by Christensen et al. (2009). The first is the model with the no-arbitrage correction, 

denoted by: 

tT

TtC
e

Tt

e
e

Tt

e

Tt

e

Tt

e
Tty t

Tt
Tt

t

Tt
Tt

t

Tt

t

Tt

t























































),(

)(

1

)(

1

)(

1

)(

1
=),( 5

)(2

2

)(2

4

)(1

1

)(1

3

2

)(2

2

1

)(1

1 



















 

1 itiit   

 

In this expression the last equation describes the vector of autoregressive latent factors. The 

second version is the model without the no-arbitrage correction, and so not included in the 

                                                
1
 The analytical expression for this correction term is found in the appendix in Christensen et al. (2009), and is 

omitted due to space constraints.  



International Econometric Review (IER) 

83 

 

model is the C(t,T)/(T–t) factor. We analyze the validity of the no-arbitrage correction 

estimation and compare the two models using a Bayesian methodology. 

 

An alternative would be to estimate the three-factor model proposed in Christensen et al. 

(2011), which corresponds to the arbitrage-free version of the original Nelson-Siegel model. 

The three-factor model, however, is unable to capture the full complexity presented in the 

curve of DI contracts. Hence, we adopted the more general model with five factors, which 

include the three factors as a particular case. 

  

4. BAYESIAN ESTIMATION BY MCMC 
  

Due to the complexity of the model, it is important to discuss the estimation methodology 

adopted. Following the approach proposed by Laurini and Hotta (2010), we chose to use 

Bayesian estimation methods in this paper. The Bayesian approach is advantageous since it 

eliminates the need to assume the usual restrictions usually adopted in classical estimations of 

models of term structure of interest rates. The inefficient two-step ordinary least squares OLS 

estimation method, used in Diebold and Li (2006), suffers short-comings in constructing 

confidence intervals for both parameters and latent factors, and the Kalman Filter methods are 

affected by multiple local maximum in likelihood function. Instead of these two alternatives, 

we opted to perform our estimation by using a Bayesian methodology based on the Markov 

Chain Monte Carlo (MCMC) method, which allowed us to obtain accurate credibility 

intervals for both latent factors and parameters, as well as for the forecasts generated by the 

model. 

 

Applying Bayesian estimation by using the MCMC method allows replacing the numerical 

maximization procedure, which is notoriously unstable in this class of models, for 

expectations of the posterior distributions. Note that there is a problem of identification and 

local maxima in this family of models, when employing models with five factors. This 

identification problem arises due to the use of two similar factors of slope and curvature, 

which cannot become identified for some vectors of parameters, and thus can generate 

multiple (infinite) maxima in the likelihood function. In this respect, the use of Bayesian 

framework can avoid this problem by using a local identification imposed by the information 

in the prior distributions, which circumvent global non identification in the five factor Nelson-

Siegel family.  The Bayesian inference allows finding the posterior distribution of the 

parameters conditional on the observed sample. This distribution is the result of updating the 

prior distribution assumed for the parameters using the likelihood function. This posterior 

distribution, denoted by p(
.
|
.
y), is the result of updating the prior distribution assumed for the 

parameters with the existing information in the sample, given by the likelihood function. 

 

To get the posterior distribution of the parameters conditioned sample, we use Bayes’ 

theorem: 

 )()/()|(=)()/,(=)|( yppypypypyp    

where p(|y) is the likelihood of the model, p() denotes the prior distribution assumed for 

the parameter, and p(y) is the marginal distribution of the observed sample, known at a 

constant of integration: 

 cpyppypyp )/()|(=)()/,(=)|(    

and, thus the posterior distribution is proportional to the product of the likelihood by the prior 

distribution: 

 )()|()|(  pypyp   
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After obtaining the posterior distribution, a summary of the results can be obtained, for 

example, by calculating the expected value and variance of the posterior distribution, as 

demonstrated below: 

  dypyE kk )|(=)|(   

 22 )]|([)|(=)|( yEdypyVar kkk     

 

We evaluate the marginal density of parameter j with the following expression: 

 dj dddypyp  ...)|(=)|( 21  

 

Except in some specific cases, generally using conjugate distributions (the prior distribution is 

from the same family of posterior distributions), there are no analytical forms for these 

posteriors. In these situations it is possible to apply techniques of numerical integration using 

Monte Carlo methods.  

 

A fundamental Monte Carlo methodology for Bayesian estimation is the method of Markov 

Chain Monte Carlo (MCMC). The fundamental idea of MCMC methods (e.g. Robert and 

Casella, 2005) is to simulate a Markov chain whose stationary distribution converges to the 

posterior distribution of interest. A key result is that the joint estimation can be factored by 

sampling the conditional distributions of the parameters. These conditionals are smaller in 

size and can be simulated in simpler forms. The procedure can be summarized by the 

sequence of iterations: 
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 When all the conditional distributions are known, one of the simplest MCMC algorithms is 

the Gibbs Sampling algorithm, where the estimation is performed by sampling from known 

conditional distributions. If it is not possible to sample from the analytical conditional 

distribution, sampling can be performed using the Metropolis-Hastings algorithm, which 

consists of a rejection method for sampling conditional distributions with simulated random 

variables. 

 

Under certain regularity conditions this set of sampled conditional distributions converges for 

posterior distribution, a result known as the Hammersley-Clifford theorem. One advantage of 

this methodology is that it involves no numerical maximization methodology, and thus avoids 

the numerical problems involved in maximizing nonlinear functions and problems of multiple 

local maxima existing in the estimation of term structure models of interest rates, as pointed 

out by Duffee (2002). 

 

To completely characterize our model a discussion of the prior distributions used is necessary. 

For the autoregressive parameters determining the dynamic for the latent factors it we 

assume Normal-Inverse Gamma distributions with an inverse-Wishart matrix for the variance 

of these latent factors, and for a i we use a log-normal prior
2
. The model specification is 

                                                
2
 Details on the values used in the priors can be obtained from the authors.  
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completed assuming a multivariate normal likelihood for the observed term structure. In 

Table A.5 in the appendix we show how to implement the five-factor model using the 

WinBUGS/JAGS software. This structure avoids the problems of identification observed in 

the five factor Nelson-Siegel models. We can observe truly distinct factors of level and 

curvature in the estimated models, as can be seen in Table 6.2 by the distinct λ1 and λ2 

parameters estimated in the Bayesian procedure.  

 

To obtain the predictive distribution of the model one-step ahead we use the relation: 

   dpypypyyp tttt )()|()|(=)|( 11  

which is the predictive likelihood weighted by the posterior distribution of the parameters, 

where yt are the observations up to period t.  

 

In the MCMC procedure, we used 15'000 simulations, discarding the first 5'000 as burn-in 

period. The diagnostic tools (Gelman-Rubin) indicate convergence of the chains in the two 

estimated models.  

 
Due to the widespread success of Nelson-Siegel family models in practical and market 

applications, these models are already implemented in a number of distinct softwares. We can 

find methods of building spot and forward curves using Nelson-Siegel and Svensson models 

in the free/open-source library for quantitative finance Quantlib (www.quantlib.org). Various 

libraries for estimation of these models in R software, as YieldCurve, DEnss and termstrc 

packages, are available at http://cran.r-project.org/web/packages/. Also there are already 

several implementations of these models in Matlab, Eviews, and other econometric softwares.  

 

Since the Nelson-Siegel model can be formulated as a state space model, it is possible to 

perform Bayesian estimation of this model using the usual tools of Bayesian estimation of 

dynamic models (e.g. Robert and Casella, 2005; Gamerman and Lopes, 2005). Detailed 

discussion on estimation methods of Nelson-Siegel models by MCMC can be found in 

Laurini and Hotta (2010) and Hautsch and Yang (2012). The MCMC Bayesian estimation can 

be easily implemented using the MCMC softwares WinBUGS or JAGS. We show in 

Appendix A.2 a prototype of a Nelson-Siegel in WinBUGS / JAGS model language.  

 

An alternative form of Bayesian estimation of Nelson-Siegel models using Integrated Nested 

Laplace Approximations can be found at Laurini and Hotta (2014). Another possible 

extension would be to implement the Bayesian estimation of the dynamic Nelson-Siegel 

model using the methods of Hamiltonian Monte Carlo software available in STAN (www.mc-

stan.org).  

 

5. Database 

 

We collected data from the daily bulletin with the statistical summary of trading on the 

Brazilian Mercantile and Futures Exchange (BM&F BOVESPA), located in the city of São 

Paulo, SP. Among the products supplied and traded by the institution, an important financial 

instrument in Brazil financial market is the DI contract. The DI One Day Futures Contract, 

whose trading market code is DI1, is the interest rate future for interbank deposits, quoted in 

an annual effective interest rate, using a basis of 252 working days.  DI is the most important 

interest rate reference in Brazil and a widely used reference for the term structure models and 

pricing of derivative contracts.  

 

http://www.quantlib.org/
http://cran.r-project.org/web/packages/
http://www.mc-stan.org/
http://www.mc-stan.org/
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The data can be obtained via the FTP system of BM&F BOVESPA, located at 

ftp://ftp.bmf.com.br within the ContratosPregaoFinal folder. The system provided a file for 

each session conducted. The reported price from contract DI1 is the unitary price (PU), and 

yields for specific maturities are calculated using the relation yield = 

((10000000/PU)^(252/Mat))-1. Table 5.1 presents a sample of some closing quotes of DI1 

contract for two consecutive trading sessions.  

 
Date ID PU Mat 

2009-03-06 DI1 9921174 18 

2009-03-06 DI1 9836551 38 

...    

2009-03-06 DI1 3241502 2466 

2009-03-06 DI1 2295908 3221 

...    

2009-04-06 DI1 9929303 17 

2009-04-06 DI1 9854147 37 
..    

2009-04-06 DI1 3273032 2445 

2009-04-06 DI1 2313061 3200 

Table 5.1 Data from DI1 Contract. 

 

The period analyzed from 2 January 2007 to 30 September 2009 contains 674 daily 

observations. The increase in the availability of observed rates for existing maturities 

beginning in 2007 greatly influenced the choice of the time range observed in this paper. This 

stylized fact reflects the recent developments in the country and its institutions, indicating 

that, over the years, investors have greater confidence in domestic financial products, thus, 

impacting the horizon and trading fees of the DI1 contract. About ten years ago, for example, 

it was possible to perform this kind of transaction with a maximum of two years ahead for 

traded maturities.  

 

The sample used can affect the validity of the no-arbitrage conditions, as discussed in Duffee 

(2011). The limitation in the time span of our sample poses some possible problems. The 

estimation method we have chosen in this study allows estimating the same model using 

irregular maturities, and thus helps capture, in part, the possible misspecification problem 

generated by this feature of our data. In the estimation procedure we just work with vertices 

of DI observed in the market, hence each day of the yield curve can have different maturities 

since a certain specific maturity may not have been transacted that same day. Thus we are not 

performing any interpolation procedure to generate a curve with fixed maturities Furthermore, 

as pointed out by Laurini and Moura (2010), yield curves generated using interpolation 

procedures generally may result in arbitrage conditions. Hence, in our paper we refrain from 

performing this procedure to avoid altering the test results for the presence of no-arbitrage 

conditions. The data used contain maturities ranging from 22 to 2376 days; their descriptive 

statistics are shown in Table A.4 in the appendix, and a view of this data can be seen in Figure 

5.1.  

 

The use of a data structure with irregular maturities creates a number of difficulties in the 

estimation and analysis of models of the term structure of interest rates. For example the 

estimation by maximum likelihood using the Kalman filter, often used in the estimation of 

models of the Nelson-Siegel family (e.g. Diebold and Rudebusch, 2013) requires an equation 

of observation for each maturity observed which is infeasible in the presence of irregular 

maturities. The irregular structure also complicates the construction of forecast measures, 

since the forecasted maturities therein cannot be directly observed. Furthermore, the use of 

ftp://ftp.bmf.com.br/
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interpolated maturities can lead to problems of measurement error, contaminating the usual 

measures of forecast accuracy, such as the mean squared or mean absolute errors.  

 
Figure 5.1 Evolution of Interbank Deposits (DI) Term Structure. 
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Note that the irregular structure can be treated directly in the Bayesian estimation method 

used in this article, calculating the contribution to the likelihood function for the observed 

data only. In Appendix Table A.5 we show how to perform this procedure using an additional 

variable (counters) that indicates which maturities were actually observed on each day, and so 

we use the contribution to the likelihood function only for these observations, looping over 

observations and days.  

 

This procedure avoids the use of interpolation procedures, which might generate arbitrage 

conditions (Laurini and Moura, 2010) and could influence the results of our analysis. An 

additional advantage of this methodology is that it is possible to use the model itself to 

interpolate the missing maturities, since we can recover the complete interest rate curve in 

each moment with the estimation of the model parameters, simply assuming the maturity τ of 

interest in equation (2.3).  

 

6. ESTIMATION RESULTS 

 

The results of Bayesian estimation for the parameters and the five latent factors are shown in 

the following figures and tables. The specification is based on a diagonal structure for the 

autoregressive process of latent factors, assuming that each latent factor is only a function of 

its own past. We also estimate a full vector autoregression, but the results are basically 
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equivalent, and we decide to use the more parsimonious specification. Table 6.2 shows the 

posterior mean and 95% credibility interval for the estimated parameters of the autoregressive 

structure of latent factors and also the decay parameters λ1 and λ2, with μ denoting the 

intercepts and ϕ the autoregressive parameter for each latent factor.  

  

 

2.5% Mean 97.5% 

μ1 0.00020 0.00129 0.00241 

ϕ1 0.98740 0.99266 0.99770 

μ2 -0.00083 -0.00033 0.00017 

ϕ2 0.98890 0.99439 0.99990 

μ3 -0.00035 0.00029 0.00094 

ϕ3 0.98590 0.99215 0.99790 

μ4 -0.00067 -0.00009 0.00050 

ϕ4 0.98700 0.99273 0.99800 

μ5 -0.00078 -0.00024 0.00029 

ϕ5 0.98540 0.99182 0.99800 

λ1 0.09643 0.09646 0.09647 
λ2 0.84850 0.84852 0.84860 

Table 6.2 Estimated Parameters – AFDNS Model. 

 

Figure 6.2, demonstrates the evolution of the level factor 1t, representing the average values 

of the term structure of interest rates in Brazil. Note that the figure is a negative rotation of the 

literal level factor. This rotation occurs, because in the model with five factors the model is 

not uniquely identified. Thus it is possible to rotate the factors to achieve the same model fit. 

 
Figure 6.2. Evolution of Level Factor. 

 
 

Figure 6.3 contains two graphs showing the evolution of the two slope factors estimated, 

according to the model represented in equation (3.5). We can note that the two factors capture 

the slope of the term structure differently from each other. This complimentarily of the factors 

contributes to the quality of the model fit.  
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Figure 6.3 Evolution of Slope Factors. 

 
(a) 1º Slope Factor  

 

 
(b) 2º Slope Factor. 

 

The factors of curvature illustrated in Figure 6.4 show a very similar dynamic evolution in the 

sample under analysis. Although the two factors to have a very similar behavior, the double 

curvature structure allows for a marginally better fit to the observed curve. Due to the 

requirement of matching each slope factor with a correspondent curvature factor to impose the 
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no-arbitrage restriction, in the Svensson formulation it is not possible to eliminate the second 

curvature factor for a more parsimonious specification. 

 
Figure 6.4 Evolution of Curvature Factors. 

 
(a) 1º Curvature Factor 

 
(b) 2º Curvature Factor 

 
 

After observing the evolution of the factors that make up the structure of the dynamic model, 

the next step is to analyze the fitting provided by the proposed models. We present in Figures 
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6.5-6.6 the fitted curves for several days with different patterns of yield, showing the good fit 

of the model in all these cases. In these figures all maturities are measured in years.  

 
Figure 6.5 Model Fit – DI Curve - 27/11/2008. 

 
 

Figure 6.6 Model Fit – DI Curves – Days 20/06/2008 and 16/03/2009. 

  

 

In a preliminary analysis of the importance of the no-arbitrage corrections, Figures 6.7 and 

6.8 present graphs containing the fit of the model estimated with and without the no-arbitrage 

restriction. It is important to note that the fitting for the observed yields is almost identical. 

Both lines appear to be superimposed in Figures 6.7 and 6.8 respectively, especially for the 

medium and longer maturities. However, although the difference is marginal, for short-term 

rates, the adjustments provided by the model without the correction of no-arbitrage performed 

best, capturing both the shape and the slope of the curve in these parts. 

 

Although the use of interest rates data without interpolation hinders the construction of 

adjustment measures, we performed a similar analysis by interpolating the results obtained by 

estimating the models with (AFDNS) and without (DNS) correction for no-arbitrage for the 

most liquid maturities of the yield curve, compared to yields interpolated for the same 

maturities. Table 6.3 shows the one-step-ahead predictions for smoothed observations, 

assuming fixed parameters for maturities of 1-48 months of interpolated DI contracts during 
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this period. We show the mean error (ME), root mean squared error (RMSE), and mean 

absolute error (MAE) for these predictions. The obtained results show that the imposition of 

no-arbitrage improves point predictions for some maturities, but is not possible to infer a clear 

result of improved forecasts using these corrections. 

  
Figure 6.7 Adjustment of models with (solid line) and without (dotted line) no-arbitrage restrictions. Day - 

20/06/2008. 

 
 
Figure 6.8 Adjustment of models with (solid line) and without (dotted line) no-arbitrage restrictions. Day. 

26/11/2008. 
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ME RMSE MAE 

Mat 1 DNS -2.8122 5.7841 3.7621 

Mat 1 AFDNS 16.8962 17.6925 17.2028 

Mat 6 DNS -2.9519 7.4186 5.6072 

Mat 6 AFDNS 0.2079 6.8099 5.0805 

Mat 12 DNS -4.9215 8.8237 6.7927 

Mat 12 AFDNS -3.4148 8.0828 6.0401 

Mat 18 DNS 0.6394 5.2270 3.9355 

Mat 18 AFDNS 1.5965 5.4275 4.1027 

Mat 24 DNS 4.0240 7.6530 5.8079 

Mat 24 AFDNS 4.7088 8.0347 6.1933 

Mat 30 DNS 2.7249 8.2024 5.2921 
Mat 30 AFDNS 3.2470 8.3902 5.5166 

Mat 36 DNS 0.2637 7.9544 4.5652 

Mat 36 AFDNS 0.6782 7.9789 4.6470 

Mat 42 DNS -1.7102 6.5887 4.6220 

Mat 42 AFDNS -1.3725 6.5087 4.5791 

Mat 48 DNS -2.3927 6.4452 4.5272 

Mat 48 AFDNS -2.1109 6.3449 4.4259 

Table 6.3 One Step-Ahead Smoothed Forecasts – DNS and AFDNS Models. 

 

As previously discussed, the use of an irregular maturity structure makes it difficult to 

construct appropriate measures of predictive performance, and thus it is difficult to construct 

and summarize these steps for all different maturities observed in the sample. A possible 

alternative would be comparing the forecasts made with interpolated maturities for distinct 

forecast horizons. A measurement error that contaminates the measurements of forecast error 

may result with this method however. Thus, the analysis of a smoothed one-step-ahead 

prediction was just an illustration to show the good fit of the model to the data and was not 

the main point of the article.  

 

The key point of this analysis is to give support to the argument of Duffee (2011) that no-

arbitrage conditions are only important in the presence of misspecification problems, which 

would be evident if the model without no-arbitrage corrections had a general lower predictive 

performance compared to the model with this correction. This analysis shows that the model 

with and without no-arbitrage correction have similar predictive performance. Furthermore, 

both models apparently do not suffer from incorrect specification, thus giving support to the 

initial hypothesis that no-arbitrage conditions are not important in this context.  

 

7. VALIDITY OF NO-ARBITRAGE CORRECTIONS 

 

To statistically verify the validity of the no-arbitrage conditions we use a Bayesian hypothesis 

testing procedure. Note that the null hypothesis that no-arbitrage corrections are not relevant 

is equivalent to testing if the no-arbitrage corrections are equal to zero, compared to the 

alternative hypothesis that these corrections are nonzero. 

 

Under the Bayesian perspective, however, this problem is not well formulated since, in this 

perspective, the goal is to recover posterior distributions of the parameters, which corresponds 

to interval estimation. Thus this null hypothesis has measure zero. However, this problem can 

be formulated as a model selection procedure, and thus a decision problem. In this problem 

the objective is to find the model with the largest posterior probability among the possible 

models. The mechanism of Bayesian hypothesis testing/model selection in this context is 
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based on the use of so-called Bayes factors. The posterior probability of the model M is given 

by: 
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In this expression we note that the calculation of the Bayes factor involves obtaining the 

marginal likelihoods, which requires integration of the likelihood over the parameter vector. 

Except in simple models, this calculation cannot be performed with analytical forms, and 

requires numerical integration methods. The method used for calculating the marginal 

likelihood (also known as integrated likelihood) used in our paper is the methodology 

proposed by Raftery et al. (2007), which uses the modified harmonic mean of the likelihoods 

obtained during the MCMC simulation as the integrated likelihood estimator. 

 

Values greater than one indicates evidence in favor of model i, while values less than one 

indicate evidence in favor of model j in the Bayes factor. In our analysis model i is given by 

the model without corrections of no-arbitrage, and model j corresponds to the model with the 

imposition of no-arbitrage restrictions. 

 

The calculated value for the Bayes factor between the unconstrained model and the model 

with no-arbitrage restrictions was 1.0443. In the interpretation proposed by Jeffreys (1961) for 

the results of the Bayes factor, only values above 3 indicate some evidence of the model 

without no-arbitrage corrections against the model with no-arbitrage imposed. Thus according 

to the Bayes factor, the models are equivalent, indicating that the correction for no-arbitrage 

restriction is not required for the term structure of interest rates for DI instruments observed in 

this sample. 

 

8. CONCLUSIONS 

 

The purpose of this study was to evaluate the importance of no-arbitrage corrections within a 

parametric model based on the formulation of Christensen et al. (2009), using the modeling of 

the term structure of interest rates in Brazil,. We used five latent factors to capture the 

movements of the yield curve of the interbank DI contracts. Additionally, to ensure no-

arbitrage consistency in the model, we added the convexity correction term in the yield curve 

equation, in accordance with the asset pricing theory. 

 

The results indicate that the no-arbitrage corrections are not statistically significant. Note that 

we can interpret this result in two ways. The first is that there are no systematic arbitrage 

opportunities in the DI contracts, which could be interpreted as the result of a liquid market in 

which all arbitrage opportunities are exhausted by rational agents; thus equilibrium prices are 

free of arbitrage opportunities. 

 

The alternative interpretation based on Duffee (2011) seems more consistent with the results 

and the methodology used however. Duffee (2011) shows that within the framework of affine 

processes, in models correctly specified, no-arbitrage corrections are not relevant. These 

corrections only mean better predictions and adjustments for models with specification 

problems, such as an inadequate number of factors or omitted variables. A similar 
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interpretation was obtained in Joslin et al. (2011). who show that in affine models the 

imposition of no-arbitrage restrictions in the cross-section structure of the term structure of 

interest rates cannot improve the predictive results of the model. 

 

In general our results show that the generalized Nelson-Siegel models of Diebold and Li 

(2006) and Christensen et al. (2009) provide an adequate modeling of the complex dynamic 

patterns that exist in the interbank DI term structure. Our implementation does not need 

interpolation procedures, and the Bayesian method does not suffer from the usual problems of 

multiple local maxima that exist in the classical methods based on numerical optimization. 

Hence, our chosen methods allowed us to construct exact credibility intervals for parameters, 

latent factors, and forecasts derived from the model.  

 

Our study contributes to the discussion on the estimation of dynamic Nelson-Siegel models 

using only traded contracts, without using interpolations and aggregations, which can 

generate artificial no-arbitrage conditions. This methodology is especially relevant for 

emerging markets, where the liquidity of emerging markets varies substantially over time, 

especially in periods of crises. Our methodology adapts to the contractions and expansions of 

observed maturities, and, thus, can be used without the need for interpolations or 

extrapolations used especially to build long maturities that have less liquidity in these 

emerging markets. Note that this same methodology can be used in many generalizations of 

the Nelson-Siegel model, such as the models with macroeconomic variables and stochastic 

volatilities discussed in Diebold and Rudebusch (2013).  

 

A possible extension of this estimation methodology is to simultaneously model the yields 

and the liquidity process related to the maturities observed in the interest rate market. In this 

case we can model the number of observed maturities as a counting process, or then model 

the observed maximum maturities as a process of conditional duration, using the latent factors 

of the model as explanatory variables and possibly other variables related to liquidity in this 

market. This simultaneous estimation can be easily implemented through additional latent 

factors in the Bayesian estimation methodology used in this work. 
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APPENDIX 

 

  Mean Median Max. Min. Std. Dev.  Symmetry  Kurtosis  Obs. 

M22 0.116453 0.1157 0.1386 0.085 0.0139 -0.6396 2.845219 670 

M44 0.116146 0.1162 0.1418 0.0858 0.014342 -0.55961 2.710521 667 

M66 0.116062 0.1162 0.1445 0.0859 0.014778 -0.46309 2.621523 658 

M88 0.115981 0.11525 0.1455 0.0858 0.015325 -0.35128 2.514608 646 

M132 0.116208 0.1156 0.1507 0.0858 0.016009 -0.20169 2.460761 673 

M198 0.117056 0.1158 0.16 0.0865 0.016981 0.046699 2.344291 674 

M264 0.118272 0.1169 0.164 0.0885 0.017485 0.252551 2.265945 674 

M330 0.119856 0.1172 0.1702 0.0917 0.01775 0.420079 2.212559 653 

M396 0.121223 0.1181 0.1685 0.095 0.017494 0.479067 2.138884 647 

M462 0.12206 0.118 0.171 0.0973 0.017123 0.596646 2.223301 639 

M528 0.122663 0.11835 0.175 0.0999 0.016378 0.719916 2.460912 642 

M594 0.12431 0.1188 0.177 0.1025 0.016787 0.696294 2.366125 592 

M660 0.12395 0.1188 0.18 0.102 0.016239 0.778424 2.662608 569 

M726 0.123896 0.1188 0.1785 0.1015 0.01596 0.96777 3.247783 544 

M792 0.123887 0.1191 0.184 0.1008 0.01526 1.021025 3.551737 566 

M858 0.124696 0.1186 0.1805 0.1007 0.016281 0.988503 3.221331 490 

M924 0.124323 0.1187 0.1793 0.1005 0.014759 0.901282 3.293741 454 

M990 0.124702 0.1207 0.1745 0.1 0.014244 0.852295 3.549224 387 

M1056 0.125993 0.1225 0.1797 0.0998 0.014583 1.010142 4.102564 403 

M1122 0.127394 0.1209 0.1812 0.0993 0.017569 0.818134 2.972903 367 

M1188 0.125297 0.122 0.1745 0.0991 0.014547 0.576614 3.248487 379 

M1254 0.124886 0.1221 0.174 0.0988 0.013797 0.753758 3.921368 313 

M1320 0.126859 0.1244 0.1755 0.0985 0.012838 1.158499 5.252697 271 

M1584 0.127597 0.123 0.1815 0.0983 0.017239 0.957634 3.45489 294 

M1848 0.126526 0.1241 0.1815 0.0981 0.014641 0.712968 3.928971 443 

M2112 0.124258 0.1233 0.1728 0.0973 0.01445 0.573032 3.387993 366 

M2376 0.126066 0.12465 0.182 0.0976 0.015526 0.887602 4.392208 398 

      

Table A.4 Descriptive Statistics of most liquid DI Contracts. 
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model{                                

for (kk in 1:TM){ 

   for (i in 1:counters[kk]) 

   {yields[kk,i]~dnorm(m[kk,i],yisigma2) 

   m[kk,i]<- beta[kk,1]+ 

  beta[kk,2]*(1-exp(-lambda1*(Maturity[kk,i]))/(lambda1*(Maturity[kk,i])))+ 

    beta[kk,3]*(1-exp(-lambda2*(Maturity[kk,i]))/(lambda2*(Maturity[kk,i])))+ 

beta[kk,4]*(1-exp(-lambda1*(Maturity[kk,i]))/(lambda1*(Maturity[kk,i]))-exp(-lambda1*(Maturity[kk,i])))+ 

beta[kk,5]*(1-exp(-lambda2*(Maturity[kk,i]))/(lambda2*(Maturity[kk,i]))-exp(-lambda2*(Maturity[kk,i]))) 

    } 

} 
 

for (kk in 2:TM){ 

 beta[kk,1:5]~dmnorm(betae[kk,1:5],P.F1[1:5,1:5]) 

 betae[kk,1]<-phi11+phi12*beta[kk-1,1] 

 betae[kk,2]<-phi21+phi22*beta[kk-1,2] 

 betae[kk,3]<-phi31+phi32*beta[kk-1,3] 

 betae[kk,4]<-phi41+phi42*beta[kk-1,4] 

 betae[kk,5]<-phi51+phi52*beta[kk-1,5] 

 

} 

 
beta[1,1]~dnorm(.09,.09) 

beta[1,2]~dnorm(-.24,.09) 

beta[1,3]~dnorm(.1,.1) 

beta[1,4]~dnorm(0.1,.01) 

beta[1,5]~dnorm(.3,.01) 

yisigma2 ~ dgamma(2.5,0.25); 

itau2 ~ dgamma(2.5,0.25);                                                       

lambda1<-exp(plambda1) 

lambda2<-exp(plambda2) 

plambda1~dnorm(-.75,.5) 

plambda2~dnorm(-.28,.5) 

phi11~dnorm(.5,.1) 
phi21~dnorm(.5,.1) 

phi31~dnorm(.5,.1) 

phi41~dnorm(.5,.1) 

phi51~dnorm(.5,.1) 

phi12~dnorm(.5,.1) 

phi22~dnorm(.5,.1) 

phi32~dnorm(.5,.1) 

phi42~dnorm(.5,.1) 

phi52~dnorm(.5,.1) 

P.F1[1:5,1:5] ~ dwish(Omega[,],5) 

Sigma[1:5,1:5]<-inverse(P.F1[,]) 
} 

Table A.5 Prototype of a dynamic Nelson-Siegel specification in WinBUGS/JAGS model language.  
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