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ABSTRACT 

 
ANN (Artificial Neural Network) models and Spline techniques have been applied to 

economic analysis, to handle economic problems, evaluate portfolio risk and stock 

performance, and to forecast stock exchange rates and gold prices. These techniques are 
improving nowadays and continue to serve as powerful predictive tools.  

In this study, we compare the performance of ANN models and Bayesian Spline models 

in forecasting economic datasets. We consider the most commonly used ANN models, 

which are Generalized Regression Neural Networks (GRNN), Multilayer Perceptron 
(MLP), and Radial Basis Function Neural Networks (RBFNN). We compare these 

models using BayesX and Statistica software with three important economic datasets: on 

the exchange rate of Turkish Liras (TL) to Euro, exchange rate of Turkish Liras (TL) to 
United States Dollars (USD), and Gold Price for Turkey. With these three economic 

datasets, we made a comparative study of these models, using the criterions MSE and 

MAPE to evaluate their forecasting performance. The results demonstrate that the 

penalized spline model performed best amongst the spline techniques and their Bayesian 
versions. Amongst the ANN models, the MLP model obtained the best performance 

criterion results. 
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1. INTRODUCTION 

 

Alfred Greiner (2009) conducted a study analyzing primary-surplus–to-GDP ratio and the 

debt ratio using the penalized spline estimation technique. This technique indicates that fiscal 

policy is sustainable if the primary–surplus-to-GDP ratio is a linear or convex function of the 

debt ratio. Greiner and Kauermann (2007) estimated these economic variables using a 

nonlinear technique and showed that the relation between the surplus and the debt ratio could 

be nonlinear.  

 

Another study utilizing the spline technique, by Audrino and Bühlmann (2009), proposes a 

flexible generalized autoregressive conditional heteroscedasticity type model for predicting 

volatility in financial time-series, using two financial datasets: 3376 daily log-returns from the 

US Standard and Poor’s index S&P500 and yields from the 30-years US Treasury bonds 

between 01.1990 and 10.2003.  
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In a study using regression splines to model time-series in finance applications, Wong and Lai 

(2004) demonstrated the flexibility and computational tractability of regression splines in 

modeling American option prices, nonlinear autoregressions with exogenous inputs and 

occasional parameter jumps, and asymmetric volatility clusters. 

 

For this paper, which conducts an empirical analysis of financial time-series, forecasting time-

series data is of obvious interest, as empirical financial analysis is highly important for 

prediction in the economic world.  

 

Unfortunately, we are often not able to generate a very accurate prediction. Financial time-

series typically display nonlinear effects. For this reason, we consider nonlinear forecasting 

models here, based on nonparametric regression. The primary goal of this study is to compare 

the two proposed techniques: ANN models and Spline techniques.  

 

There exist various techniques in nonparametric statistics, like regression splines (Wood, 

2003), smoothing splines (Green and Silverman, 1994), B-splines (de Boor, 1978; Dierckx, 

1993), and P-splines (Eilers and Marx, 1996). At this time Bayesian versions of the spline 

approach are also widely used in nonparametric problems, such as the Bayesian penalized 

spline (Lang and Brezger, 2001), and adaptive Bayesian regression spline (Biller, 2000). 

These techniques are all aimed at one problem: to make a precise prediction while allowing 

for flexibility in models. 

 

In this paper we also use artificial neural networks, which are mathematical models imitating 

biological neural networks. Artificial neural networks are defined by three fundamental 

elements: architecture structure, learning algorithm, and activation function (Egrioglu et al., 

2009). These elements determine the forecasting performance of artificial neural networks, 

and thus appropriately determining them is an issue that should be considered carefully 

(Aladag et al., 2009). One important parameter is network architecture, and although there are 

no general rules for determining the best architecture, different types of architecture should be 

tried for the most accurate results. Of the various types of artificial neural networks in 

existence, in this paper we use multilayer perceptron (MLP), Radial Basis Function (RBF) 

and Generalized Regression Neural Networks (GRNN) in forecasting time-series data.  

 

In our previous studies involving time-series data, we compared the cubic smoothing spline 

and penalized spline models (Nizamitdinov et al, 2010a). In another study, we compared 

artificial neural network models and the fuzzy time-series approach with spline functions 

using daily, weekly, and monthly closing prices of Istanbul Stock Exchange (ISE) national-

100 index (Nizamitdinov et al., 2010b). 

 

In this paper we apply nonparametric analysis using P-splines and cubic regression spline, 

Bayesian penalized spline and adaptive Bayesian regression spline, and neural network 

models such as Generalized Regression Neural Networks (GRNN), Multi-Layer Perceptron 

(MLP), and Radial Basis Function (RBF) using three different time-series datasets: Weekly 

Exchange Rate of Euro/TL during 06.01.2006-31.12.2010, Weekly Exchange Rate of 

Dollar/TL during 06.01.2006-31.12.2010, and Monthly Gold Price during 2001-2010. 

Forecasting results of models are then compared using mean squared error (MSE) and mean 

absolute percentage error (MAPE) performance criterions. 
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The regression spline, penalized spline, and Bayesian splines are briefly introduced and 

described in Section 2. Section 3 offers a review of artificial neural networks. Section 4 

presents the comparative empirical analysis. Finally, Section 5 concludes the paper. 

 

2. SOME THEORY ABOUT NONPARAMETRIC SPLINES 

 

The nonparametric regression model has the following form: 

 bxxaxfy niii  ...,)( 1   (2.1) 

where f
.


.
C

2
(a,b) is an unknown smooth function; yi, i

.
=

.
1,...,n are observation values of the 

response variable y; xi, i
.
=

.
1,...,n are observation values of the predictor variable x and i 

normal distributed random errors with zero mean and common variance .2
.  

 

The basic aim of the nonparametric regression is to estimate unknown function f
.


.
C

2
(a,b) (of 

all functions f with continuous first and second derivatives) in model (2.1). In the 

nonparametric regression, function f is some unknown smooth function. 

 

Smoothing spline (Green and Silverman, 1994) estimate of the function solves the following 

minimization problem: 

 

Find f̂
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(a,b) that minimizes the penalized residual sum of squares, defined as: 
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for some value .
>

.
0. The first term in equation (2.2) denotes the residual sum of the squares, 

and it penalizes the lack of fit. The second term which is weighted by  denotes the roughness 

penalty. In other words, it penalizes the curvature of the function f. The  in (2.2) is known as 

the smoothing parameter.  

 

The solution based on smoothing spline for minimum problem in the equation (2.2) is known 

as a “natural cubic spline” with knots at x1,...,xn. From this point of view, a special structured 

spline interpolation which depends on a chosen value  becomes a suitable approach of 

function f in model (2.1).  
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) be the vector of values of function f at the knot points x1,...,xn. The 
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where f̂ is a natural cubic spline with knots at x1,...,xn for a fixed smoothing parameter .
>

.
0, 

and S is a positive-definite smoother matrix, which depends on  and the knot points x1,...,xn. 

For general references about smoothing spline, see Green and Silverman (1994). 
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The problem of choosing the smoothing parameter is one of the main problems in curve 

estimation. If we use fitting curves by polynomial regression, the choice of the degree of the 

fitted polynomial is essentially the equivalent of the choice of a smoothing parameter. There 

are a number of different methods to choose a smoothing parameter. Probably the most well-

known is generalized cross-validation. The generalized cross-validation (GCV), a modified 

form of cross-validation, is a popular method for choosing the smoothing parameter. The first 

reference was given by Craven and Wahba (1979). 

 

The basic idea of generalized cross validation is to replace the denominators 1
.
‒

.
(

.
S

.
)ii of 

Cross Validation by their average 1
.
‒

.
n

-1
tr(

.
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.
), producing the Generalized Cross Validation 

score function defined below: 
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the residual sum of squares about f̂ divided by a correction factor of n{1
.
‒

.
n

-1
tr(

.
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)}

2
. Just as 

in cross-validation, the GCV choice of smoothing parameter is then carried out by minimizing 

the function GCV() over .  

 

There are many types of cross validation, detailed explanations of which can be found in 

Basci et al. (2010). For a justification of choosing GCV over CV, as well as information about 

different types of cross validation see Basci et al. (2010). The next technique that we used in 

study is P-splines (Eilers and Marx, 1996). Eilers and Marx (1998) make some significant 

changes in the smoothing spline technique. They made the following two assumptions: First, 

they assume that E(y)
.
=

.
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.
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.
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.
) is a n×k matrix of B-splines, and 

that a is the vector of regression coefficients; secondly, they suppose that the coefficients of 

adjacent B-splines satisfy certain smoothness conditions that can be expressed in terms of 

finite differences of the ais. Thus, from a least-squares perspective, the coefficients are chosen 

to minimize the following: 
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For least squares smoothing we have to minimize S in (2.5). The system of equations that 

follows from minimization of S can be written as:  

 aDDBByB kk )(     (2.6) 

where Dk is a matrix representation of the difference operator 
k
, and the elements of B are 

bij
.
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.
Bj(xi). The B-spline Bi,k+1 of degree with knots i,...,i+k+1 is defined as:  
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Using the explicit expression property, the B-spline representation can be expressed as 

follows: 
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which shows that this function is indeed a spline with i,...,i+k+1 as active knots. 

 

The Bayesian P-splines approach developed by Stefan Lang and Andreas Brezger (2001) for 

additive models and extensions by replacing difference penalties with their stochastic 

analogues, i.e. Gaussian (intrinsic) random walk priors which serve as smoothness priors for 
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the unknown regression coefficients. The approach generalizes work by Fahrmeir and Lang 

(2001) based on simple random walk priors. A closely related approach based on a Bayesian 

version of smoothing splines can be found in Hastie and Tibshirani (1990). Compared to 

smoothing splines, in a P-splines approach a more parsimonious parameterization is possible, 

which is of particular advantage in a Bayesian framework where inference is based on 

Markov Chain Monte Carlo (MCMC) techniques. 

 

Priors for the regression parameters of nonlinear functions are defined by replacing the 

difference penalties of penalized splines based on B-spline basis by their stochastic analogues. 

First differences correspond to a first order random walk and second differences to a second 

order random. Thus, the following is obtained: 

 jppjjp u 1,  or jppjpjjp u  2,1,2   (2.9) 

 

The priors can be equivalently written in the form of global smoothness priors. 
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with appropriate penalty matrix Kj. For full Bayesian inference, the unknown variance 

parameters j
2
 are also considered as random and estimated simultaneously with the unknown 

.
j. Therefore, hyperpriors are assigned to the variances (and the overall variance parameter 

.2
) in a further stage of the hierarchy by highly dispersed (but proper) inverse Gamma priors 

p(j
2
)

.
~

.
IG(aj,bj). The prior for must not be diffuse in order to obtain a proper posterior for .

j, 

see (Hobert and Casella, 1996) for the case of linear mixed models. A common choice for the 

hyperparameters is and a small value for bj, e.g. bj
.
=

.
0.005, bj

.
=

.
0.0005 or bj

.
=

.
0.00005, leading 

to almost diffuse priors for j
2
. 

 

Adaptive Bayesian regression spline was introduced by Biller (2000). He supposed a fully 

Bayesian approach to regression splines with automatic knot selection in generalized semi 

parametric models. As a basis function representation of the regression spline he used B-

spline basis. The reversible jump Markov chain Monte Carlo method allows for estimation of 

both the number of knots and the knot placement, together with the unknown basis 

coefficients determining the shape of the spline (Biller, 2000). 

 

3. ARTIFICIAL NEURAL NETWORKS 

 

McCulloch and Pitts (1943) first presented a mathematical model of a neuron. Since then 

many artificial neural networks have been developed building on the well-known McCulloch 

and Pitts model (see for example, Rumelhart and McClelland, 1986; Mammone and Zeevi, 

1991; and Zhang and Zhang, 1999). 

 

The following three sub-sections present an overview of the three neural networks used in this 

study. 

 

3.1. Multilayer Perceptron (MLP) Neural Network  

 

Since the development of the back-propagation learning algorithm in the mid-1980s, the 

multilayer perceptron neural network (MLP) is one of the most widely used neural networks 

in the field of neural computing (Rumelhart et al., 1986; Vaughn, 1999). The weights and 

thresholds learned by the network during supervised training are not fully understood 

however. Furthermore, neural networks are currently undermined by their inability to explain 
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or justify their output classifications, and the MLP network is widely regarded as a black box 

(Vaughn, 1999). 

 

In multilayer perceptron networks (MLP-networks), the processing units are arranged 

vertically in several layers. Connections exist only between units in adjacent layers. The 

bottom layer is called the input layer, because the activations of the units in this layer 

represent the input of the network. Correspondingly, the top layer is called the output layer. 

Any layers between the input layer and output layer are called hidden layers; their activations 

are not visible externally. 

 

The MLP is a very simple model of biological neural networks; based on the principle of a 

feedforward flow of information, i.e., the network is structured in a hierarchical way. The 

MLP consists of different layers where information flows only from one layer to the adjacent 

layer. From a theoretical point of view, it is not necessary to consider more than one output 

unit, because two or more output units could be realized by considering two or more MLPs in 

parallel. However, if the outputs are correlated, it may be possible to achieve the same 

approximation results with fewer hidden units. The input units play no active role in 

processing the information flow, because they just distribute the signals to the units of the first 

hidden layer. All hidden units work in an identical way, and the output unit is a simpler 

version of a hidden unit. In an MLP, each hidden unit transforms the signals from the former 

layer to one output signal, which is distributed to the next layer. Each hidden unit has an 

activation function, which is, in general, nonlinear and is the same for all hidden units. The 

output of a hidden unit is determined by applying the activation function on the sum of the 

weighted signals from the former layer and an individual bias. In the output unit, the 

activation function is the identity function (Trenn, 2008). 

 

During the processing in a MLP-network, activations are propagated from input units through 

hidden units to output units. At each unit j, the weighted input activations aiwij are summed, 

and a bias parameter j is added. 

 j i ij j

i

net a w    (3.11) 

 

The resulting network input netj is then passed through a sigmoid function (the logistic 

function) in order to restrict the value range of the resulting activation aj to the interval [0, 1]. 
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The network learns by adapting the weights of the connections between units until the correct 

output is produced. MLP networks use a variety of learning techniques, the most popular 

being back-propagation (Haykin, 1999:178-278), which performs a gradient descent search on 

the error surface. The weight update wij, i.e. the difference between the old and the new 

value of weight wij, is defined as: 

 ,ij pi pjw a    (3.13) 
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here, tp is the target output vector that the network must learn. 
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Training the MLP-network with the back-propagation rule guarantees that a local minimum of 

the error surface is found, though this is not necessarily the global one. In order to speed up 

the training process, a momentum term is often introduced into the update formula: 

    1ij pi pj ijw t a w t        (3.15) 

 

For example, a three-layer MLP is given in (Figure 3.1). 

 
Figure 3.1 Architecture of a three-layer MLP 

 
 

3.2. Radial Basis Function (RBF) Neural Network 

 

The locally tuned and overlapped receptive field is a well-known structure that has been 

studied in regions of the cerebral cortex, visual cortex, and so on. Based on the biological 

receptive fields, Moody and Darken (1989) proposed a network structure, namely, a Radial 

Basis Function network that employs local receptive fields to perform function mappings 

(Trenn, 2008; Lee and Choi, 2001; Jang and Sun, 1993). The RBF network is known in the 

field for approximation of non-linear functions and pattern recognition. Due to its simple 

architecture, the RBF network has an especially faster convergence property than the 

multiplayer neural network (Narendra and Parthasarathy, 1990; Wang, 1994; Wang, 1996; 

Jang et al., 1997). 

  

RBF networks traditionally have been associated with radial functions in a three-layer 

network (see Figure 3.2) consisting of an input layer, a hidden layer of radial units, and an 

output layer of linear units (Moody and Darken, 1989; Renals and Rohwer, 1989).  

 

The radial basis function determines the output with input variable x and distance from center 

. As the input variable approaches the center, the output becomes larger. If the basis 

functions are appropriately selected, RBF network proves notably adept at approximating any 

nonlinear function. The Gaussian function is often used as the radial basis function, written 

as: 

  
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2
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x
f x
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  
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where x: input, : center, : width of receptive field. Output of RBF network is expressed by 

a linear combination of the radial basis functions, written as: 

 
1

n

j j

j

y w 
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  (3.17) 
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where wj: connection weight, j: output of basis function. The clustering method is used to 

determine center , and width  is determined by a heuristic method. For example, the 

average distance between the center and N neighborhood data is used (Mori and Awata, 2007; 

Wasserman, 1993). Parameter  adjusts the response of output to input.  

 
Figure 3.2 Architecture of a RBF Network 

 
 

After evaluating the parameters  and , the RBF network needs to determine the weight 

between the hidden and the output layers, which is evaluated by the steepest descent method 

(Mori and Awata, 2007). The RBF network is easier to tune up compared to the MLP, since 

unlike the MLP, RBF network has the weight of unity between the input and the hidden layers 

(Bishop, 1995). 

 

3.3. Generalized Regression Neural Network (GRNN) 

 

GRNN can be used for function approximation (Wasserman, 1993), and when enough 

neurons are available GRNN can approximate a continuous function to any level of accuracy 

(Wagener et al., 2004). GRNN has exactly four layers: input, a layer of radial centers, a layer 

of regression units, and output. This network must be trained by a clustering algorithm. This 

network can be thought of a normalized RBF network in which there is a hidden unit centered 

at every training case. Figure 3.3 shows the general structure of the GRNN (Mostafa, 2010). 

 
Figure 3.3 General structure of the GRNN 
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4. DESIGN OF THE ANALYSIS 

 

In this section: The three datasets used for analysis are described in Section 4.1. Section 4.2 

reviews the performance criterions used for evaluating the different techniques and finally, 

Section 4.3 talks about ANN and Spline modeling for economic datasets and presents the 

results from the analysis (see Makridakis et al., 1993; Ord et al., 2000). 

 

4.1. Data description 

 

In this section three time-series datasets are presented: (1) the dataset on the Exchange Rate of 

Euro/TL in Turkey (see TCMB, 2011), which consists of weekly time-series, starting 

06.01.2006 and ending 31.12.2010, and comprises n=261 observations; (2) the dataset on the 

Exchange Rate of Dollar/TL in Turkey (see TCMB, 2011), which consists of weekly time-

series, starting 06.01.2006 and ending 31.12.2010, and comprises n=261 observations; (3) is 

the dataset on Gold Prices in Turkey (see TCMB, 2011), which consists of monthly time-

series, starting January 2001 and ending December 2010, and comprises n=120 observations.  

 

4.2. Analysis method 

 

The performance of each model is evaluated based on the proximity of the prediction values 

for test data and the observed values. The mean square error (MSE) and mean absolute 

percentage error (MAPE) consistency criterions are used in order to compare the 

performances of results obtained from spline methods and artificial neural network models. 

These criterions are defined as follows: 

 
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ii yy
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 (3.18) 

 MAPE  
1

100 ,i

i

e

n y
   (3.19) 

 

There are various other performance measures of accuracy in the forecasting literature 

without MSE, each with particular advantages and limitations (Makridakis et al., 1983). The 

most frequently used are: 

 The mean absolute deviation (MAD) ;nei   

 The sum of squared error (SSE)  
2
;ie  (3.20) 

 The root mean squared error (RMSE) ;MSE   

where ei
.
=

.
(

.
yi

ç
‒

.
ŷi) and is the individual forecast error; yi is the actual value; ŷi is the forecasted 

value and n is the number of error terms (Zhang et al., 1998). 

 

In this study, we used MSE and MAPE, which are more commonly used performance 

measures (and also easy to transform into RMSE) in the forecasting literature, especially for 

ANN models. Also, we found similar results for these performance measures for forecasting 

the three datasets at hand. We have chosen MSE and MAPE as the performance criterions in 

this study for the interest of efficiency of the analysis for all techniques and datasets, and 

legibility and conciseness of tables and results.  
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4.3. ANN and Spline modeling for economic datasets 

 

Because the datasets contain time-series data, it is necessary to determine if these data are 

stationary or not. So, firstly, we use the time-series toolbox and the intelligent problem solver 

(IPS) module of the STATISTICA to test the datasets for stationarity. After doing the 

necessary transformation for the given datasets, for time-series forecasting, and after 

obtaining stationary data, the empirical analysis step is started. 

 

Neural networks are much more complex models than the linear techniques used in traditional 

statistical modeling. They are more difficult to optimize and require difficult design decisions, 

such as determining the right type and complexity of network for the problem and the right 

input variables to use (Asma et al., 2012). The intelligent problem solver (IPS) module of the 

STATISTICA uses some highly sophisticated algorithms to solve these problems 

automatically (Hill and Lewicki, 2007).  

 

For our empirical analysis, we used the mgcv package of S. N. Wood (2006) for cubic 

regression and penalized spline, and the functions from the R program for choosing the 

smoothing parameter. For the analysis with Bayesian penalized splines we used BayesX 

software (BayesX, 2011), and the ‘BVCM’ package (Biller, 2000) for analysis using adaptive 

Bayesian regression spline, available at SFB386 (2011). Forecasting with artificial neural 

network models was utilized in STATISTICA. 

 

First, we analyzed the time-series datasets using the following methods: 

 Cubic penalized splines with second order difference penalty, with 20, 30, and 40 

knots. The smoothing parameter was forecasted using generalized cross validation, 

where the optimal smoothing parameter was chosen by the R program. 

 

 Cubic regression splines with second order penalty, with 20, 30, and 40 knots. The 

smoothing parameter was forecasted using generalized cross validation, where the 

optimal smoothing parameter was chosen by the R program. 

 

 Bayesian cubic penalized spline with second order random walk penalty and 20 knots. 

We forecasted the models using three different choices for the hyperparameters a and 

b. We used a
.
=

.
1, b

.
=

.
0.005, a

.
=

.
1, b

.
=

.
0.0005 and a

.
=

.
1, b

.
=

.
0.00005 as in the paper by 

Lang and Brezger (2001).  

 

 The adaptive Bayesian regression spline by Biller (2000) was used as an example of a 

competing Bayesian approach. We used 20 knots, which was default in the “BVCM” 

package (Biller, 2000), available at SFB386 (2011). Experiments with 30 and 40 knots 

showed worse results than with 20 knots. 

 

In the following tables, we summarized the performance criterions (MSE and MAPE) for all 

datasets (out of sample). Table 4.1 contains information about the performance criterions of 

the forecasting results of the Gold time-series dataset. As we can see from this table, the best 

result is attained using the cubic penalized spline according to MSE and MAPE performance 

criterions. Among the Bayesian spline techniques, the Bayesian penalized spline outperforms 

the adaptive Bayesian regression spline method, according to both MSE and MAPE results. 

 

In Table 4.2, we disclose the forecasting results of Exchange rate of Euro/TL time-series 

dataset. As we can see from this table, in general, we can say that the best performance 
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criterion is attained using the cubic penalized spline technique. Amongst the Bayesian spline 

methods, the Bayesian penalized spline shows better results according to MSE and MAPE 

performance criterions. 

 

 MSE MAPE MSE MAPE MSE MAPE 

Methods 
k=20 

knots 

k=20 

knots 

k=30 

knots 

k=30 

knots 

k=40 

knots 

k=40 

knots 
Cubic regression spline 2.755 17.01 1.170 16.12 0.659 16.02 

Cubic penalized spline 2.258 14.44 0.961 14.37 0.733 14.35 

Adaptive Bayesian regression spline 5.013 23.05 4.055 24.06 4.326 25.12 

For Bayesian penalized splines selection of hyper parameters 

 MSE MAPE MSE MAPE MSE MAPE 

 
a=1, 

b=0.005 

a=1, 

b=0.0005 

a=1, 

b=0.0005 

a=1, 

b=0.000 

a=1, 

b=0.00005 

a=1, 

b=0.00005 

Bayesian penalized splines  3.349 18.3 3.348 17.8 3.319 17.3 

Table 4.1 The performance criterions (MSE and MAPE) of forecasting results of Gold time-series dataset. 

 

 MSE MAPE MSE MAPE MSE MAPE 

Methods 
k=20 

knots 

k=20 

knots 

k=30 

knots 

k=30 

knots 

k=40 

knots 

k=40 

knots 

Cubic regression spline with 0.0021 30.06 0.0019 30.79 0.0012 29.98 

Cubic penalized spline 0.0023 30.04 0.0018 30.06 0.0011 29.76 

Adaptive Bayesian regression spline 0.0025 36.45 0.0021 37.8 0.0019 38.9 

For Bayesian penalized splines selection of hyper parameters 

 MSE MAPE MSE MAPE MSE MAPE 

 
a=1, 

b=0.005 

a=1, 

b=0.005 

a=1, 

b=0.0005 

a=1, 

b=0.0005 

a=1, 

b=0.00005 

a=1, 

b=0.00005 

Bayesian penalized splines 0.0020 31.5 0.0019 30.8 0.0018 30.7 

Table 4.2 The performance criterions (MSE and MAPE) of forecasting results of Exchange rate Euro/TL dataset. 

 

As we can see from the Table 4.3, all methods have similar results to each other. For the 

Exchange rate of Dollar/TL dataset all methods perform well according to the performance 

criterion. 

 

 MSE MAPE MSE MAPE MSE MAPE 

Methods 
k=20 

knots 

k=20 

knots 

k=30 

knots 

k=30 

knots 

k=40 

knots 

k=40 

knots 

Cubic regression spline with 0.0016 43.4 0.0013 43.2 0.0006 42.91 

Cubic penalized spline 0.0019 43.05 0.0013 42.8 0.0004 42.68 

Adaptive Bayesian regression spline 0.012 53.42 0.0113 52.4 0.0103 52.6 

For Bayesian penalized splines selection of hyper parameters 

 MSE MAPE MSE MAPE MSE MAPE 

 
a=1, 

b=0.005 

a=1, 

b=0.005 

a=1, 

b=0.0005 

a=1, 

b=0.0005 

a=1, 

b=0.00005 

a=1, 

b=0.00005 
Bayesian penalized splines 0.0016 44.65 0.0016 44.52 0.0016 43.32 

Table 4.3 The performance criterions (MSE and MAPE) of forecasting results of Exchange rate of Dollar/TL 

dataset. 

 

Because of the nonlinear structure of the corresponding datasets, ANN is a suitable tool for 

accurate modeling. The users can determine the number of inputs and outputs, the activation 

functions, algorithm for obtaining the weights of the network, the number of hidden layers, 

and the number of neurons inside the hidden layers. Since the combination of all the different 

choices available would result in various ANN models, the analysis would become overly 

complicated. Thus, for the sake of simplicity, we utilize the intelligent problem solver (IPS) 

module of the STATISTICA for deciding the best ANN model for the given datasets. The 
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corresponding program gives the users the opportunity to construct numerous ANN models at 

a time and to select the best model. So we run 100000 ANN models to select the most 

appropriate one for the three datasets: the dataset of the exchange rate of Turkish Liras (TL) 

to Euro, the dataset of the exchange rate of Turkish Liras (TL) to United States Dollars 

(USD), and the dataset of Gold Prices for Turkey. 

 

To the best of our knowledge, there are no theoretical reasons for invalidating neural network 

models built with nonstationary time-series, and in fact many successful neural network 

approaches for financial forecasting applications do not explicitly address it (Refenes, 1995; 

Weigend et al., 1992; White, 1988; Virili and Freisleben, 2000). Because of this reason, we 

did not take into account nonstationary data for neural networks. If we use Box-Jenkins 

models for forecasting, stationarity should be obtained. There are many studies that consider 

these situations and compare these models aspect of stationarity (see e.g. Virili and 

Freisleben, 2000; Zhang and Qi, 2005). 

 

Generalized regression neural network (GRNN), Multilayer Perceptron (MLP), and Radial 

Basis Neural Network (RBF) are used to analyze these economic datasets. Then, MSE and 

MAPE are calculated for each model respectively. The best ones for each model according to 

MSE and MAPE values with their corresponding ANN model architecture are shown in Table 

4.4, 4.5, and 4.6, respectively 

 

Methods Architecture MAPE MSE 

Radial basis function 1:5-11-1:1 265.76 46.03 

Multilayer perceptron 1:5-16-16-1:1 59.65 11.65 

Generalized regression neural networks 1:10-47-2-1:1 1171.71 228.83 

Table 4.4 The performance criterions (MSE and MAPE) of ANN models of Gold price time-series dataset. 

 

Methods Architecture MAPE MSE (Multiplied by 10000) 

Radial basis function 1:5-8-1:1 11.78 5.80 

Multilayer perceptron 1:5-16-16-1:1 13.17 6.59 

Generalized regression neural networks 1:10-100-2-1:1 107.67 54.42 

Table 4.5 The performance criterions (MSE and MAPE) of ANN models of Euro/TL time-series dataset. 

 
Methods Architecture MAPE MSE (Multiplied by 10000) 

Radial basis function 1:5-13-1:1 12.43 5.96 

Multilayer perceptron 1:4-16-16-1:1 11.94 5.94 

Generalized regression neural networks 1:7-100-2-1:1 32.19 18.67 

Table 4.6 The performance criterions (MSE and MAPE) of ANN models of Dollar/TL time-series dataset. 

 

For example, in Table 4.4, the best result for the performance criterions (MSE and MAPE) of 

ANN models of Gold price time-series dataset is that obtained by the MLP model, with 1-16-

16-1 architecture. Here, MLP has 1 input, 16 hidden nodes in the first hidden layer, 16 hidden 

nodes in the second hidden layer, and 1 output. All inputs for all of the models are taken at 

time (t-1), and the outputs are taken at time t. We show this model’s architecture in Table 4.7. 

 

Layer Units Synaptic function Activation function 

1 5 Linear Linear 

2 16 Linear Hyperbolic 

3 16 Linear Hyperbolic 

4 1 Linear Linear 

Table 4.7 MLP 1:5-16-16-1:1 model’s architecture. 
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MLP 1:5-16-16-1:1 model has a total of (5×16+16×16+16×1+33 biases) 385 weights, 

including 33 biases. It is not necessary to give all weights’ and biases’ values for all models. 

Other models in these results can also be interpreted as the MLP 1:5-16-16-1:1 model.  

 

Now, we compare all the techniques that we used in this analysis. Table 4.8 displays the mean 

squared error criterion for all the utilized methods, and Table 4.9 shows the MAPE results for 

all methods. The MSE and MAPE results are similar so we can express same comments for 

both of them to all datasets and methods. As Table 4.3 previously demonstrated, the MSE 

criterion for the cubic regression spline, penalized spline, and adaptive Bayesian spline was 

minimized when we used 40 knots. Different hyperparameters were used to obtain the best 

approximation by the Bayesian penalized spline technique, namely, b
.
=

.
0.05, b

.
=

.
0.005, 

b
.
=

.
0.0005, and b

.
=

.
0.00005. The Bayesian penalized spline method shows the best results for 

the hyperparameters a
.
=

.
1 and b

.
=

.
0.00005. 

 

Methods/ Dataset 
Gold 

price 

Ex. rate of Dollar/TL 

(Multiplied by 10000) 

Ex. rate of Euro/TL 

(Multiplied by 1000) 

Cubic regression spline 0.66 6.14 1.29 
Penalized spline 0.73 4.76 1.17 

Adaptive Bayesian regression spline 4.33 103.20 1.92 

Bayesian penalized spline 3.32 16.32 1.81 

Radial basis function 46.03 5.96 0.58 

Multilayer perceptron 11.65 5.94 0.65 

Generalized regression neural networks 228.83 18.67 5.44 

Table 4.8 Performance results of all techniques for MSE. 

 

Methods/ Dataset 
Gold 

price 
Ex. rate of Dollar/TL  Ex. rate of Euro/TL  

Cubic regression spline 16.02 42.91 29.98 

Penalized spline 14.35 42.68 29.76 

Adaptive Bayesian regression spline 23.05 52.40 38.90 
Bayesian penalized spline 18.30 43.32 30.70 

Radial basis function 265.76 12.43 11.78 

Multilayer perceptron 59.65 11.94 13.17 

Generalized regression neural networks 1171.71 32.19 107.67 

Table 4.9 Performance results of all techniques for MAPE. 

 

5. CONCLUSION 

 

In this paper we analyzed three different time-series datasets: the Weekly Exchange Rate of 

Euro/TL between 06.01.2006 and 31.12.2010, the Weekly Exchange Rate of Dollar/TL 

between 06.01.2006 and 31.12.2010, and the Monthly Gold Price between 2001 and 2010. 

The methods that we used in this study included the following: cubic regression spline, 

penalized splines, Bayesian penalized splines, adaptive Bayesian regression spline, and 

artificial neural networks, such as Radial Basis Function (RBF), multilayer perceptron (MLP), 

and generalized regression neural networks (GRNN). Based on the empirical results of the 

analysis, we conclude the following: 

 For the Bayesian penalized splines method the performance criterion varied depending 

on the hyperparameters selected. As we can see from the table of results for Gold 

prices, the performance criterion are worse when the hyperparameters are a
.
=

.
1 and 

b
.
=

.
0.005 than when they are a

.
=

.
1 and b

.
=

.
0.00005. The table on the Exchange rate 

Euro/TL dataset, however, highlights that the differences between the results of the 

different parameters are not so large. 
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 The adaptive Bayesian regression spline method shows the worst result among all of 

the techniques used in analysis.  

 

 The penalized spline method had the best performance criterion values between the 

spline techniques and their Bayesian versions. However, the mean squared error 

criterion results of the penalized splines, regression spline, and Bayesian penalized 

spline techniques are very close when used with both the Exchange rate of Dollar/TL 

dataset and the Exchange rate of Euro/TL dataset. The results of artificial neural 

networks show that the best performance criterion result was obtained using the 

multilayer perceptron model. Actually, the results of the multilayer perceptron model 

are close to that of the radial basis function. 

 

 Among all techniques that we have used in this study, for the Gold price and the 

Dollar/TL datasets, the penalized cubic spline model had the best performance 

criterion results, whereas for the Euro/TL dataset, the multilayer perceptron method 

showed the best forecasting performance. 
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