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ABSTRACT 
 

In this paper a comparative study is conducted to evaluate the out-of-sample performance 
of mean-variance portfolios when three different variance models are considered. We use 
the common framework of orthogonal factors to specify the conditional covariance matrix 
structure. A key advantage of this approach is that the estimated factors can be modeled 
as univariate GARCH processes so that we can consider models for which multivariate 
extensions are not available. We, therefore, compared the Integrated GARCH (IGARCH) 
with the Exponential GARCH (EGARCH) and Fractionally Integrated Exponential 
GARCH (FIEGARCH) factor models on the basis of statistical diagnostics, and found the 
EGARCH model superior when fitted with heavy tailed distributions. We also evaluated 
out-of sample portfolio performances in terms of efficient frontiers, prediction intervals 
and turnover, and concluded that the EGARCH and FIEGARCH models provide 
comparable outcomes which are overall superior to the IGARCH performance. Looking 
jointly at statistical and economic criterions we conclude that fitting a FIEGARCH model 
with heavy tailed distributions can generally improve out-of-sample portfolio 
performances. 
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1. INTRODUCTION 
 
Portfolio selection is the process by which an investor decides how to allocate the wealth 
among a universe of financial assets. Asset portfolios can be classified in two categories 
according to the purpose of their selection and, consequently, the different type of assets 
included. We can distinguish between:  
 

• Asset allocation portfolios: typically include market indices as indicators of financial 
markets behavior. Their aim is to determine the optimal investment sharing among 
different markets; 
 

• Equity portfolios: usually include a large number of equities from a certain market. 
Their aim is to select the optimal combination of single assets within a given market. 

 
The two selection strategies are complementary; the first one establishes investment sharing 
between several markets, while the second step selects equities within each market. The 
statistical approach to this selection problem treats asset prices and returns as random 
variables and the investor perception of preferences is usually formalized defining a utility 
scale. Most of the approaches to portfolio selection depend on the expected utility of the final 
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wealth, which is maximized to determine an optimal set of weights. This expectation is 
typically taken over the multivariate probability distribution of the asset returns. 
Maximization of the expected utility, therefore, leads to a criterion that depends on the 
parameters of the underlying probability distribution of returns. If multivariate normally 
distributed returns are assumed, these parameters are the vector of expected returns and the 
variance-covariance (VC) matrix. Even in the case of non-Gaussian returns, the VC matrix is 
important in a portfolio selection process and needs to be estimated or forecasted. Since 
temporal dependence is often observed in return's distribution, a conditional approach can be 
appropriate to estimate and forecast the mean vector and the VC matrix as inputs in the 
portfolio selection process. For this purpose, the use of GARCH predictions is very popular in 
the quantitative finance literature. As a recent example, Hawkes and Date (2007) compare 
several GARCH forecasts using statistical measures. In contrast to the large body of literature 
on statistical comparison of GARCH-type predictions, not many studies consider comparisons 
that directly evaluate portfolio performances. Although it is well known that portfolio 
selection is more sensitive to estimation error in expected returns (Chopra and Ziemba, 1993), 
portfolio weights and subsequent portfolio performance are also sensitive to the VC matrix 
estimation. In practice, the most important portfolio selection application is to ensure the 
optimal portfolio prediction over a certain horizon.  
 
The aim of this paper is to assess the sensitivity of portfolio out-of-sample performances 
using measures from statistics and quantitative economics. In particular, we will investigate 
the relative merits of some VC matrix time series based estimation and forecasting 
approaches. In a number of studies (see Adcock, 2004) the use of factor models has been 
associated with the skewed Normal distribution to model asset returns. Some investigation 
has been conducted using Orthogonal GARCH factors to analyze the asset covariance matrix 
(Bystrom, 2004), but these analyses have not included evaluation of portfolio performances. 
Our paper links various aspects of the aforementioned literature. We conduct an empirical 
investigation of portfolios by means of factor models. Moreover, we explicitly consider 
skewed GARCH evolution for orthogonal factors and evaluate the relative merits of 
incorporating heavy tails and long memory. 
 
The paper is structured as follow. Section 2 reviews the conditional mean-variance portfolio 
selection, deriving the mean-variance efficient frontier and introducing the relevant notation. 
Section 3 reviews the definition of Orthogonal GARCH factors for conditional VC matrix 
estimation and forecasting. This description also includes a review of univariate GARCH 
specifications that will be compared in the following analyses. Section 4 contains an empirical 
analysis which includes estimation of orthogonal variance factors, along with the fitting of 
three competing GARCH model specifications and their statistical diagnostics. Section 5 
compares the out-of-sample portfolio performances obtained by considering different factor 
models. We mainly look at the empirical size of prediction intervals and at portfolio turnover 
as measure of risk management cost. We show these results according to an increasing scale 
of risk appetite. Section 6 concludes and outlines the direction for future research.  
 
2. MEAN-VARIANCE PORTFOLIOS 
 
The classical portfolio selection method – also known as mean-variance approach 
(Markowitz, 1952) – has been widely used by the financial community and is, in principle, 
not strictly related to the maximized expected utility. However, under certain conditions and 
assuming a quadratic utility function, mean-variance selection can be viewed as optimal in 
terms of investor's preferences. A simple way to summarize asset return's distribution (both 
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analytically and graphically) is to represent portfolios in the mean-variance plan. The 
portfolio mean is thus assumed to be a measure of expected gain while the portfolio variance 
is considered as a measure of risk. In its original version this is a static model based on the 
following assumptions: 
 

• The distribution of asset returns (and linear factors) is time invariant so that no time 
dependence is involved in moments estimation; 
 

• The selection problem is viewed as one-period optimal, so at the end of each period 
the selection has to be updated. 

 
Typically, the return's distribution is not time invariant and out-of-sample evaluations require 
a conditional approach, so that the portfolio selection will be performed using all information 
available up to a certain time. However, even in this more general setup, the selection 
problem is, in principle, viewed as one-period optimal. In practice the costs of renegotiating a 
new portfolio need to be compared with the expected increase of wealth, so the weights are 
not always conveniently updated. In other words, not always statistical and economical 
optimality coincide. This will lead us to consider both aspects in our comparative study. As 
shown in previous studies (Best and Grauer, 1991), the portfolio selection can be directly 
formulated as a Quadratic Programming Problem (QPP). For τ > 0, setting u = t + τ, when a 
single budget constraint (imposing weights summing-up to unity) is considered, a closed form 
solution is available and is given by  
 wt,u;q·=·argmwax {qµ't,uw –½w' Σt,uw|1' w = 1}  
 = Σ-

t
1
,u1/at,u·+·q[Σ-

t
1
,u (µt,u·–·1bt,u/at,u)], (2.1) 

where xu is a vector of p asset returns at time u·>·t, µt,u=�(xu|Ωt), Σt,u= Var(xu|Ωt), at,u= 1′Σ-
t
1
,u1 

and bt,u·=·1′Σ
-
t
1
,uµt,u. The constant q represents the risk appetite parameter, an index upon which 

the optimal portfolio solution will depend. Allowing the risk appetite q to vary, we obtain the 
set of optimal portfolios previously referred to as efficient frontier. Along the frontier, the 
choice of an optimal portfolio depends on the individual preferences, being relevant in terms 
of risk appetite/aversion, and represented by the value of the parameter q. The efficient 
portfolios mean and variances can therefore be easily derived. Using vector notation we have  
 mt,u;q·=·µ′t,uwt,u;q·=·β0·+·β1q, (2.2) 
for some constants β0, β1. The interested reader can refer to Best and Grauer (1991) for further 
details concerning this section. Equation (2.2) shows that the efficient portfolios mean is a 
linear function of the risk appetite coefficient. On the other hand 
 vt,u;q·=·w′t,u;q·Σt,uwt,u;q·=·γ0·+·γ1q

2, (2.3) 
for some constants γ0, γ1, so that the efficient portfolio variance is a quadratic function of the 
risk appetite parameter. Solving the equation (2.2) for q and substituting in (2.3), we have the 
analytic expression for the conditional efficient frontier that is 
 (mt,u;q·–·β0)·=·β1(vt,u;q·–·γ0). (2.4) 
This is a parabola in mean-variance plan or a hyperbola in mean-standard deviation space.  
 
3. ORTHOGONAL FACTORS VARIANCE (OFV) MODELS 
 
This section reviews the definition of Orthogonal GARCH factors for conditional VC matrix 
estimation and forecasting. This description also includes a review of univariate GARCH 
specifications that will be compared in the following analyses. The Orthogonal GARCH 
model was first proposed in Alexander (2001), and is based on Principal Component Analysis 
(PCA). A spectral decomposition is conducted on the estimated covariance matrix returning 
linear combinations of log-returns (the so called risk factors) being uncorrelated by 
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construction and having their variances represented by their eigenvalues. Consequently, the 
usual advantages of PCA can be used to facilitate the covariance matrix estimation. 
Furthermore, the estimated matrix will be positive definite by construction, if all factors are 
considered. Most importantly, predictions can be obtained by using univariate models. To 
introduce the relevant notation, we can consider the problem dealt with render diagonal the 
full square and symmetric matrix Σt·=·Var(xt|Ωt). The corresponding eigensystem can be 
written as 
 ΣtPt·=·PtΛt ,  (3.5) 
where Pt is the normalized eigenvector matrix and Λt is the eigenvalues matrix. By 
construction, the first is an orthogonal and positive definite matrix and the second is diagonal 
positive semi-definite. The covariance matrix spectral decomposition is therefore given by 
Σt·=·PtΛtP′t. Omitting the classical details in PCA derivation, we will indicate the principal 
components as the vector yt·=·P′txt., the conditional mean vector as �(yt|Ωt)·=·gt and the 
conditional covariance matrix as Var(yt|Ωt)·=·Λt. The eigenvalues will be in decreasing order 
and will represent the proportion of variance explained by the orthogonal factors. 
Orthogonality allows the use of univariate models to forecast the factors conditional mean 
vector as (yu|Ωt)·=·gt,u and the factors covariance matrix as Var(yu|Ωt)·=·Λt,u. It follows that we 
can define the assets conditional mean vector as µt,u·=·Ptgt,u and conditional covariance matrix 
as Σt,u·=·PtΛt,uP′t. 
 
3.1. GARCH Factors 
 
We assume the p orthogonal factors to be modeled as yi,t·=·λ

½
i,t εi,t, where εi,t·~·WN(0,1) and 

i·=·1,…, p. If λi,t·=·λi ∀ t, this setup would not reproduce variance clusters since the 
conditional variance matrix will be time invariant. Since this feature is clearly detectable in 
our data, we will adopt the popular GARCH modeling in three alternative specifications. In 
mid eighties the Generalized ARCH or GARCH model was introduced (Bollerslev, 1986). 
Accordingly, the conditional volatility was modeled as  

 .
1

,
1

2
0, ∑∑

=
−

=
− ++=

p

j
jtij

q

k
ktkti λβεααλ

 

(3.6)  

 
For a review of ARCH and GARCH models and their financial applications we refer the 
reader to the available monographs (Gourieroux, 1997; Franses and Van Dijk, 2000). A 
GARCH (1,1) model is equivalent to an infinite ARCH representation with exponentially 
declining weights on the lagged squared errors. In its original form, this process cannot 
reproduce important empirical evidence, such as persistence in variance changes, leverage and 
long memory, arising from the analysis of financial volatility. Consequently, we briefly 
review three evolutions of this model and their basic properties. For a more detailed review of 
these models and their Maximum Likelihood estimators, we refer the reader to Zivot and 
Wang (2003). 
 
Non-stationarity. If the stationarity conditions do not hold, the process is said to be 
integrated GARCH or IGARCH. In the GARCH setting, non-stationarity has different 
meaning in comparison to the ARMA framework. For GARCH processes, when the sum of 
the coefficients is equal to one, the variance has unbounded support, whereas in ARMA 
models this implies unbounded support for the mean. Empirically, non-stationarity of 
GARCH processes causes high persistence of variance shocks. We can explore the GARCH 
non-stationarity substituting in equation (3.6) (when p·=·q·=·1) α1·=·1·−·β1, so that we have 
 ,)1( 1,1

2
10, −− +−+= tiktti λβεβαλ

 

(3.7)  
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for a smoothing coefficient β1·∈· (0,1). By iterating the substitution, we have the interesting 
result 
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(3.8)  

 
When α0·=·0 this is equivalent to an infinite Exponentially Weighted Moving Average 
(EWMA), such as the method used by J.P. Morgan in the RiskMetrics procedure, (see 
Longerstaey and Spencer, 1996). This parameterization reduces to a single, exponentially 
decaying coefficient that can be easily estimated even in a multivariate setting. This procedure 
has represented the benchmark approach for daily volatility forecasting.  
 
Leverage and Heavy Tails. In classic GARCH models positive and negative shocks have the 
same effect on determining conditional variance, since this variable exclusively depends on 
squared residuals. However, a commonly observed fact in financial volatility is that bad news 
(negative shocks) tends to have a larger impact on volatility than good news (positive shocks). 
The Exponential GARCH (EGARCH) model has been proposed (Nelson, 1991) to allow for 
leverage effect. In this model the conditional variance evolves accordingly to 

 ∑∑
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(3.9) 

where ��i,t·=·log(λi,t). The response variable is now the log-variance instead of the variance. 
This will ensure the positivity of the conditional variance without needing coefficients 
restrictions typically required by classic GARCH model. When εt–k is positive (or there is 
good news), the innovation effect is (1·+·γi)|εt–1|; in contrast, when εt–k is negative (or there are 
bad news), the total effect is (1·–·γi)|εt–1|. Bad news can now have a larger impact on the 
variance, and the value of γi would be expected to be negative. In the following analyses we 
will exclusively refer to EGARCH(1,1) models. In order to take into account the occurrence 
of large variance realizations, we will fit EGARCH models with t−distributed innovations. 
 
Leverage and Long Memory. The EGARCH approach is very useful in order to provide a 
robust approach for modeling time series that are often encountered in finance. In fact, it can 
reproduce the so called leverage effect and a positive definite conditional variance, without 
needing to constrain model coefficients. Another important empirical feature characterizing 
financial volatility is the slow decay of its autocorrelation function. This phenomenon is the 
so called long range dependence also known as long memory, (see Mikosch and Stărică, 
2003). Incorporating long memory and leverage into conditional volatility modeling lead to 
the direct extension of the Nelson’s EGARCH (Bollerslev and Mikkelsen, 1996). In order to 
reproduce these features, a model has been proposed, where the conditional variance evolves 
accordingly to: 

 ( ),~
)1)((

1
,,, ∑

=
−− ++=−

q

j
jtijjtijti

d hhcLL γτλφ
 

(3.10) 

where L is the lag operator, (1·–·L)d is the fractional difference operator (for d·<·1), φ(L) is the 
stationary autoregressive polynomial and hi,t·=·εt/λi,t are the standardized residuals. Bollerslev 
and Mikkelsen (1996) proved that this model (that is commonly called Fractionally Integrated 
Exponential GARCH, or FIEGARCH, model) is stationary if 0·<·d·<·1. In the following 
analyses we will exclusively refer to FIEGARCH (1,1) models. 
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4. ESTIMATING PORTFOLIOS 
 
This section contains some statistical analyses which are intended to be preliminary to our 
main comparison based on economic criterions. Equation (2.1) shows that the optimal 
portfolio weights depend upon the VC matrix through its inverse. In practice the VC matrix is 
unknown and needs to be estimated from data. Since portfolio selection is mainly relevant as 
optimal investment prediction, it turns out that financial operators are interested in calculating 
the optimal weights relative to a future period. The length of this period typically depends 
upon the investment horizon. Investment Banks choose quite short horizons to recalibrate 
their portfolios, while Pension Funds are interested in longer horizons, since the purpose of 
their investment is typically be less speculative. The predictions are also determined by the 
methods and models used to estimate the VC matrix and the vector of expected returns. In the 
following sections we will assess and compare the performances of three models, evaluating 
portfolio sensitivity under both statistical and economic perspectives. We will adopt the 
common framework of OFV models, where the factors are assumed to evolve according to 
three alternative GARCH (1,1) specifications. We will first consider the EWMA model, 
deriving from the Integrated GARCH (IGARCH) model as illustrated in Section 3.1.  
 
Figure 4.1 Log return series for five stock indices and four exchange rates observed in the period 4/4/1989 - 
2/12/1996.  
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Notes: From the top row, clockwise: HKD/BP, JY/BP, USD/BP, NIKKEY 250, S&P 100, GM/BP, DAX 50, 
FTSE 100, HKSE all. 
 
We will then consider the so called Exponential GARCH (EGARCH) model that is capable of 
reproducing the negative skewness in returns and factor’s distribution. Finally, we will 
consider the so called Fractionally Integrated Exponential GARCH (FIEGARCH) model that 
can also reproduce the long range dependence often observed in financial volatility. 
Orthogonal GARCH (OGARCH) models have been largely used by the financial industry for 
long time, and still provide a reliable instrument of wide practical application. Despite the 
availability of multivariate models (however, with somehow restricted parameterizations), 
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OGARCH are still considered a robust framework that deserves to be further analyzed for its 
predictive ability. We have deliberately chosen a dataset of strongly correlated asset returns in 
order to mimic the way this modeling strategy has been adopted in the financial industry. The 
following analysis, therefore, should be of major interest to financial analysts, usually very 
interested in computationally robust methodologies. 
 
Several authors note that by considering strongly correlated assets, the OFV models can 
provide a good approximation of the optimal factor determination. The choice of OFV models 
will allow us to compare relative merits of the aforementioned GARCH specifications, 
something that is not always possible to attain by considering multivariate GARCH, for which 
such extensions are often not available. In our study, log-returns of five stock indices (S&P 
100, FTSE 100, NIKKEY 250, HKSE-all-shares and DAX 50) and four exchange rates (the 
exchange rate of British Pound (BP) vs. four currencies: US Dollar (USD), German Mark 
(GM), Japanese Yen (JY) and Hong Kong Dollar (HKD) have been considered in order to 
take into account the correlation between markets and related currencies. 
 
In addition to statistical diagnostics, performances of different methods can be reasonably 
assessed looking at the consequences on management strategies. This comparative analysis 
will be conducted in Section 5, by fitting our models either on the fixed sample displayed in 
Figure 4.1, and on rolling windows starting with that sample. In either case, the sample and 
the windows will be of size 2000. 
 
Figure 4.2 Scree plot for Orthogonal Variance Factors y1,…, y9 
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4.1. Estimating PCA 
 
In this section we will estimate orthogonal factors for the dataset illustrated in Figure 4.1. In 
particular, we analyze the covariance matrix using PCA and represent graphically the most 
important loadings. We also look at the eigenanalysis of the sample covariance matrix, so that 
the cumulative eigenvalues can be represented using a simple scree-plot. 
 
From the scree-plot (Figure 4.2) there is evidence that 5 principal components explain a large 
part of the overall variance. Figure 4.3 displays the corresponding principal components 
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loadings. The first component explains a large part of the variance (about 38 %) and has been 
kept fixed. The other factors are plotted on the vertical axes. Figure 4.3 contains clear 
evidence that the first principal component can be interpreted as representing the negative 
correlation between market indices and currencies. The remaining principal components 
loadings are difficult to interpret. 
 
Figure 4.3 Orthogonal Factors Loadings 
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Notes: In the horizontal axis y1 is kept fixed for all plots. In the vertical axis, from the top row, clockwise: y2, y3, 
y4, y5. We have evidence that y1 represents the negative correlation between stock indices and currencies. 
 
4.2. Comparing Fitted Models 
 
The popular EWMA model, which has been widely used by the investment industry, in our 
comparative analysis serves as benchmark against which we assess, through the EGARCH 
platform, the relative merits of modeling heavy tails and long memory. In both latter cases, 
the EGARCH model has been chosen since the in-sample analysis has shown significant 
leverage effect. We recall that our main aim is to assess the various models through their 
portfolio performances. However, in this section we conduct a statistical in-sample analysis 
which is preliminary to the out-of sample comparison. Therefore, in this section we discuss 
several evidences arising from fitting the aforementioned models to orthogonal factors as 
estimated from our dataset. The first analysis aims at finding a convenient heavy tailed 
distribution for the EGARCH model to be used in the subsequent comparative study. We 
considered a Student-t distribution, with increasing degrees of freedom, to find the best fitting 
of EGARCH residuals. Figure 4.4 shows quantile plots for the best fitting distribution, which 
has six degrees of freedom. We then perform a further preliminary analysis by comparing the 
outcome of statistical diagnostics for the three factor models, where the fitted EGARCH 
assumes student-t distributed residuals.  
 
We henceforth call this model the t-EGARCH model. We analyze residuals, obtained from 
fitting the three models, by testing the null hypotheses about the absence of serial correlation 



International Econometric Review (IER) 

9 
 

and ARCH effects. We use the Ljung-Box portmanteau test for the first purpose and the 
Breusch-Pagan test to conduct the second analysis. The results of the two tests are 
summarized in Table 4.1 and Table 4.2, respectively. 
 
Figure 4.4 QQ plots between Gaussian EGARCH factor model residuals and Student-t random draws with 6 
d.o.f. 
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Notes: From the bottom row, clockwise: y1,…, y9: 
 

MODEL I E F 

FACTORS LJ test p.val LJ test p.val LJ test p.val 

y1,t 115.76 0.13 62.60 1 81.0 0.9 

y2,t 68.81 0.99 149.27 0 131.1 0.02 

y3,t 188.88 0 28.25 1 36.5 1 

y4,t 19.80 1 72.89 0.98 80.9 0.92 

y5,t 46.43 1 64.32 1 64.1 1 

y6,t 37.46 1 89.75 0.76 81.1 0.9 

y7,t 76.88 0.96 117.23 0.11 110.2 0.23 

y8,t 248.34 0 55.69 1 69.7 0.99 

y9,t 169.99 0 127.41 0.03 108.3 0.27 

Table 4.1 Ljung-Box (LJ) test for the three orthogonal factor models: the EWMA-IGARCH model (I), the t–
EGARCH (E) and FIEGARCH (F). 
 
According to the tables above, none of the three factor models is remarkably superior to the 
other contenders. However, we have evidence that the FIEGARCH model is somehow 
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superior to its competitors in terms of Ljung-Box test (absence of auto-correlation in 
residuals), whereas the EWMA-IGARCH model is somehow superior to its contenders in 
terms of Breusch-Pagan test (absence of ARCH effects in residuals). 
 

MODEL I E F 

FACTORS BP test p.val BP test p.val BP test p.val 

y1,t 7.93 1 16.18 1 68.30 0.99 

y2,t 9.65 1 1166.82 0 973.34 0 

y3,t 37.42 1 0.46 1 0.94 1 

y4,t 0.36 1 69.36 0.99 77.51 0.95 

y5,t 0.30 1 5.03 1 9.87 1 

y6,t 0.26 1 5.82 1 16.84 1 

y7,t 44.51 1 144.39 0 106.00 0.3 

y8,t 691.58 0 3.64 1 9.12 1 

y9,t 2.36 1 286.24 0 313.10 0 

Table 4.2 Breusch-Pagan (BP) test for the two orthogonal factor models: t-EGARCH (E) and FIEGARCH (F). 
 
5. COMPARATIVE OUT-OF-SAMPLE ANALYSIS 
 
In this section we compare GARCH factor models in terms of out-of-sample portfolio 
performances. We will measure portfolio sensitivity to different approaches for predicting the 
conditional covariance matrix and the vector of expected returns. More precisely, the 
following criteria will be used:  
 

• Efficient frontier analysis: this qualitative analysis will compare how different models 
produce out-of-sample efficient frontiers. Based on a fixed sample of 2000 
observations, for each model four different forecasting horizons are considered (1 
week, 2 weeks, 1 month, 2 months), in order to capture changing in performance due 
to different forecasting horizons. We will prefer models giving a stable estimation of 
portfolio mean and variance so that the frontier will not be too sensitive to the 
forecasting horizon. 
 

• Turnover: this is an important criterion for asset management. In presence of 
transaction costs, asset sales or purchases are charged of a percentage that decreases 
net returns, so we will prefer a model that, given a certain one-step-ahead forecasting 
power, ensures more stable weights requiring a smaller amount of costs to update the 
efficient investment. Here we use a measure of absolute turnover given by: 

  
500
1

ˆ =qη
500

1=
∑
t

1'(|wt+1,t;q – wt,t–1;q |), (5.11) 

where wt+1,t;q is a set of efficient weights relative to a risk appetite level q forecasted at 
time t for time t + 1. As in the previous exercise, the backtest sample size is 500. A 
previous work where this assessment criterion was adopted is Gerhard and Hess 
(2003). The new aspect of our analysis is in that this measure is now calculated for 
different risk appetite levels, and a relation between costs (turnover) and risk can be 
evaluated for mean-variance portfolios. 
 



International Econometric Review (IER) 

11 
 

• Forecasted residuals chart: We will use 500 time-points, ranging from (4/12/96) till 
(3/11/98), to build-up a backtest exercise on one-step-ahead standardized portfolio 
returns. The standardization is conducted by means of forecasted conditional portfolio 
mean and variances estimated from a rolling window of 2000 observations. For a 
model capable to capture the serial dependence of variance factors, we expect the 
standardized portfolio returns (using conditional mean and variance) to behave as 
independent and (Gaussian) identically distributed random errors. For each risk 
appetite level q, and for each forecasting horizon τ·>·0, we then measure the empirical 
size of Gaussian confidence regions (of 95% nominal level) built-up from these 
standardized residuals using the empirical measure: 

   
500
1ˆ

; =qτθ
500

1=
∑
t

� ,96.1
;,

;,;














≤

−

+

++

qtt

qttqt

v

m

τ

ττµ
 (5.12) 

where �(·) is the indicator function, mt,t+τ;q is the portfolio (at time) t conditional mean 
forecasted for time t·+·τ and vt,t+τ;q is the portfolio t conditional variance forecasted for 
time t·+·τ. In this formula, each value of t·=·1,…,·500 corresponds to a daily 
observation within the backtest period. 

 
5.1. Efficient Frontier Portfolios 
 
Looking at the entire frontier, we want to extend our comparative analysis in order to inspect 
how different forecasting models perform with respect to different risk levels. In this analysis 
we will consider forecasting horizons of 1 and 2 weeks and 1 and 2 months. Figure 5.5 shows 
the frontier estimated for the EWMA-IGARCH model. 
 
Figure 5.5 Out-of-sample Efficient Frontier for EWMA Factor Model. 

 
 
We have evidence that this model delivers portfolios with larger mean and variances, in 
comparison to the other models. The figure also shows a marked sensitivity of frontiers, with 
respect the forecasting horizon. The second frontier will be estimated by the Orthogonal 
EGARCH model, fitted using a Student-t distribution. Looking at Figure 5.6 we have 
evidence that, also in this case, both mean and variance estimations decrease for larger 
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horizons, and their magnitude is directly related to the risk level. The portfolios appear to be 
more stable than in the previous case, and both means and variances lie in smaller ranges. 
Figure 5.7 shows the frontier estimated by using the FIEGARCH factor model. There is now 
a similar behavior to the previous model, although this strategy seems to be characterized by 
higher sensitivity to risk and forecasting horizon. Summarizing, all models showed decreasing 
estimates for both mean and variance in relation to the forecasting horizons. This decrease is 
more marked for the EWMA model, but it’s also consistent for the FIEGARCH model. The 
t−EGARCH model seems to deliver the more stable forecasting, in relation to the forecasting 
horizons that we have considered. 

 
Figure 5.6 Out-of-sample Efficient Frontier for EGARCH Factor Model. 
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Figure 5.7 Out-of-sample Efficient Frontier for FIEGARCH Factor Model. 
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5.2. Portfolios Turnover 
 
This criterion compares the stability of weights in a sequence of forecasted efficient 
portfolios. This measure is relevant in presence of transaction costs, when it represents the 
expected cost for maintaining an efficient investment. In the previous section we have 
formalized the measure used in this analysis. Table 5.3 displays the results of estimated 
turnovers using the three factor models. 
 
The FIEGARCH model shows the lowest turnover when compared with the competitive 
models. The t-EGARCH model show lower turnover than the FIEGARCH model for 
minimum variance portfolios, but then increasingly underperform the FIEGARCH for 
increasing values of the risk appetite parameter. The EWMA-IGARCH uniformly 
underperforms both competitive models, except for minimum variance portfolios, for which it 
shows superior performance in comparison to both contenders. In particular, since minimum 
variance portfolio weights do not depend upon the expected portfolio returns, the EWMA 
model seems penalized by its inferior forecasting ability for this latter quantity. 
 

q EWMA t-EGARCH FIEGARCH 

0 0.72 1.05 2.39 

2 22.20 13.60 11.32 

4 34.76 26.37 20.59 

6 46.15 39.32 30.00 

8 58.25 52.50 39.55 

10 70.55 65.82 49.32 

Table 5.3 Portfolio absolute turnover �̂q for the three orthogonal factor models: EWMA (IGARCH), t-EGARCH 
and FIEGARCH. 
 
5.3 Forecasting Standardized Portfolio Returns 
 
In this analysis we have used up to 500 observations to construct out-of-sample charts of 
conditional standardized portfolio returns. Table 5.4 summarizes the results of this 
experiment, carried out in relation to different forecasting models and horizons. 
 

q E    E    F    

 1w. 2w. 1m. 2m. 1w. 2w. 1m. 2m. 1w. 2w. 1m. 2m. 

0 .53 .53 .53 .53 .84 .83 .83 .81 .65 .64 .64 .63 

2 .53 .53 .52 .52 .82 .81 .81 .79 .68 .68 .68 .67 

4 .52 .52 .52 .52 .81 .80 .80 .78 .69 .69 .68 .68 

6 .51 .52 .52 .52 .83 .81 .79 .77 .69 .68 .67 .67 

8 .52 .52 .52 .52 .83 .81 .79 .78 .70 .70 .69 .67 

10 .52 .52 .52 .52 .83 .81 .80 .78 .70 .69 .67 .65 

Table 5.4 Empirical significance level of prediction intervals ��
τ;q for the EWMA-IGARCH (I) and the two 

orthogonal factor models: t-EGARCH (E) and FIEGARCH (F). 
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Looking at Table 5.4, the FIEGARCH model appears very robust with respect to risk appetite 
and to different forecasting horizons. However, the use of a Gaussian distribution causes the 
effective interval sizes to be sensibly lower than the theoretical level. The Orthogonal 
EGARCH model shows the best forecasting performance. The effective significance level is 
not much lower than the nominal level, and is very superior to the results obtained from the 
FIEGARCH model. Instead, the EWMA-IGARCH has the worst performance. Summarizing, 
we have evidence that both FIEGARCH and t-EGARCH provide reasonably good prediction 
intervals. The EWMA model provides less reliable forecasting, in relation to the considered 
forecasting horizons. This behavior seems to be due to its heavily constrained 
parameterization. A word is in order, about the sensitivity of these results upon the window 
length (2000 time points) that we have used. The stability of the empirical confidence levels 
across the forecasting horizons, and the simulation studies conducted in various studies (see 
Demos and Kyriakopoulou, 2010) suggest that this sample size is adequate to obtain reliable 
estimates of parameter values. In other words, the bias of estimates does not decrease 
significantly for increasing sample size. Bias corrections can always be applied, but in most 
cases, these provide some improvements for realistic sample sizes, of at most 3000 
observations. In any cases, given the evidence of aforementioned simulation studies, it is 
prudent to use samples of at least 500 observations. 
 
6. CONCLUSIONS 
 
We conducted a comparative study on the mean-variance portfolio performances for three 
different orthogonal factor variance (OFV) models. The orthogonal factors were estimated by 
means of principal component analysis. We therefore considered univariate GARCH-type 
models for predicting variance factors. We initially considered the Orthogonal EWMA-
IGARCH, as benchmark model. This is the generalization of the popular RiskMetrics 
procedure, since it allows the single orthogonal factors to be smoothed individually. We then 
compared this popular model with EGARCH factors, where the relative merits of heavy tails 
and long memory have been taken into account. We preliminarily evaluated these models in 
terms of statistical diagnostics and then compared by means of portfolio performances. These 
latter analyses included both qualitative and quantitative out-of-sample comparisons, 
conducted in order to assess portfolio performances for different risk levels. From a 
qualitative standpoint, we evaluated out-of-sample efficient mean variance frontiers, in order 
to assess the sensitivity of portfolios to risk appetite. For a quantitative analysis we conducted 
a backtest exercise with standardized portfolio returns chart, along with a comparison of 
portfolio absolute turnovers. It turned out that the overall best performance was provided by 
the EGARCH model, when fitted with a Student-t distribution with 6 degrees of freedom. 
Overall, the EGARCH model outperformed the FIEGARCH model, which also showed 
reasonable performances along with the EWMA-IGARCH model. Despite its wide use in the 
financial industry, this latter model produced poorer portfolio performances in comparison to 
the EGARCH-type factors. This shows that, along with heavy-tails, the leverage effect also 
plays a significant role in the prediction of efficient portfolios. We conclude that the out-of-
sample performances of mean-variance portfolios are more positively affected by the use of 
heavy- tailed factors rather than the inclusion of long memory effects, an important role being 
played by the leverage effect. An S+ library portfoliOGARCH containing the software used 
in our analyses is in preparation and will be available from the author upon request. 
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