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ABSTRACT

We study time-varying realized volatility and redtcorrelation measures as proxies for
the true volatility and correlation. We investigateeasures of Two-Scale realized
Absolute Volatility TSAY and correlation TSACORXy which are helpful to cope
effectively with the problem of market microstruaueffects at very high frequency
financial time series. The measures are construzsdd on subsampling and averaging
method so that they possess rather less bias avpresence of market microstructure
noise. Absolute transformation of return values Ib@sn proved in literature to be more
robust than squared transformation when considéairgg values. With respect to some
stylized facts of markets, realized squared caiteladoes not display dynamic behavior.
Motivated by robustness of realized absolute Milgtive study an alternative measure
of correlation, built on absolute-transformed wititgt This measure of correlation
exhibits experimentally some dynamics and henceespnedictability capability on
minute-by-minute frequency exchange market data. Sh@w that the distribution of
realized correlation series computed based 8ACORXxytends to comply a rightward
asymmetric shape implying that upside co-movemargsgreater than downside ones.
Moreover we study the association between realiptatility and correlation. According
to the two-scale measure, our findings empiricaillggest that when returns in Euro/USD
exchange rate are highly volatile, the relationweein Euro/USD and Euro/GBP
exchange markets is strong, and when Euro/USD oddnve, the relationship relaxes.

Key words: Realized Volatility and Correlation, Long Memorga$fng Law, Self-
Similarity Dimension, Market Microstructure Effects
JEL Classifications: C14, C51, C58, F31, G15

1. INTRODUCTION

Measuring and forecasting financial volatility isasucial importance to asset and derivative
pricing, asset allocation and risk management. Elerimancial economists have been
intrigued by the very high precision with which ablity can be estimated under the diffusion
assumption routinely invoked in theoretical workdthdugh most textbook models assume
volatilities and correlations to be constant, itwsdely recognized among both finance
academics and practitioners that they vary impdstaover time, with persistent dynamics.
Furthermore, their fluctuations display substantialatility persistence (Andersen et al.,
1999a). The basic insight follows from the obseorathat precise estimation of diffusion
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volatility does not require a long calendar spardafa; rather, volatility can be estimated
arbitrarily well from an arbitrarily short span déta, provided that returns are sampled with
sufficient frequency. This contrasts sharply witreqise estimation of the drift, which
generally requires a long calendar span of datmrdéess of the frequency with which returns
are sampled. Consequently, the volatility literathas steadily progressed toward the use of
higher frequency data (Andersen et al.,, 1999a).tMbdsvhat we have learned from this
burgeoning literature is based on the estimatiopashmetric ARCH or stochastic volatility
models (SV) for the underlying returns. Howevee tralidity of such volatility measures
generally depends upon specific distributional agsions (Andersen et al., 2001a).

The use of higher frequency data, now increasirgigilable, has also been concurred the
emerging theories emphasizing the advantages cfatoalled realized volatility and realized
power variation as well as correlation estimators.

It has been recognized that volatility is inhergnihobserved, and evolves stochastically
through the time. Volatility models are cast eithediscrete time or continuous time. It is
clear, however, that the trading and pricing ofusiies in many of today's liquid financial
asset markets is evolving in a near continuousdasthroughout the trading day. As such, it
is natural to think of the price and return seonés$inancial assets as arising through discrete
observations from an underlying continuous timecpss (Andersen et al., 2006). Any log-
price process subject to a no-arbitrage conditiod sveak auxiliary assumptions will
constitute a semi-martingale that may be decompaosta a locally predictable mean
component and a martingale with finite second mdamehndersen et al. (2006) argue that
the return variance is approximately equal to tkpeeted squared return innovation. This
suggests that we may be able to measure the nedlatility directly from the squared return
observations. However, this feature is not of mdelct use as the high frequency returns
have a large idiosyncratic component that induceszaable measurement error into the
actual squared return relative to the underlyingavee. In reality, there is a definite lower
bound on the return horizon that can be used ptodilyg for computation of the realized
volatility, both because we only observe discretedynpled returns and, more important,
market microstructure frictions on intradaily lev&lich as discreteness of the price grid,
asymmetries in information, transaction costs, d8l-spreads, lunch-time effects, and U-
shape volatility of trading volume over the dayund gross violations of the semi-martingale
property at the very highest return frequenciesis Timplies that we typically will be
sampling returns at a high frequency that leavesranegligible error term in the estimate of
integrated volatility.

By construction, the realized squared volatilityas observed proxy for the underlying
quadratic variation and the associated measurearemts are uncorrelated. This suggests a
straightforward approach where the temporal featwkthe series are modelled through
standard time series techniques, letting the datilegthe choice of the appropriate
distributional assumptions and the dynamic represem. This is akin to the standard
procedure for modelling macroeconomic data wheeeuthderlying quantities are measured
(most likely with a substantial degree of erroryl dhen treated as directly observed variables
(Andersen et al., 2006).

We proceed under the convenient assumption thaaneedealing with correctly specified
models and the associated full information setsthed the conditional first and second
moments are directly observable and well specifieds useful to think of the returns as
arising from an underlying continuous-time process. particular, suppose that this
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underlying model involves a continuous sample daththe (logarithmic) price process.
Under general assumptions, the price process may ble written in standard stochastic
differential equation form as
dp(t) = p(t)dt+ o (Hdw(t) (1.2)
where timet > 0O, p(t) is a price attf and indeed a semimartingale or a Brownian
semimartingalep(t) denotes the driftg(t) refers to the or spot volatility, andi(t) denotes a
standard Brownian motion. Theis called the spot volatility process amdhe mean or risk
premium process. Intuitively, over infinitesimal alirtime intervalsj,
re,i)s pt)—pt-1)=@t-i)li+o(t-i)iW(t)

whereiW(t) = W(t) —W(t—) ON(O,i). Of course, for = 1, and constant driffy(7) = p¢-1, and
volatility, o(7) = a |11, fort— 1 <r<t, this reduces to the discrete time return decoitipos

re=Hejt-1+ € = Yejr-1t+ Gje-1% (1.2)
where z denotes an i.i.d. with mean zero, variance ongalBe uncorrelated disturbance
(white noise) process, and, the discretely sampled return process, which eiadity
decomposed into an expected conditional mean rangran innovation, where the latter may
be expressed as a standardized white noise precaksd by the time-varying conditional
volatility. The drift, u;, and instantaneous volatilityg(t), for the continuous time model in
(1.1) need not be constant over thel]t] time interval, resulting in the general expreasio
for the one-period return,

()= p) - pt-1) = [ u(3ds+ [ o($aW(s) (L3)

Similarity between this representation and the iptessone-period return for the discrete-time
model in (1.2) is clear. The conditional mean aratiance processes in the discrete
formulation are replaced by the corresponding iatesgl realizations of the (potentially
stochastically time-varying) mean and variance @sscover the following period, with the
return innovation driven by the continuously evalyistandard Brownian motion. Intuitively,
the volatility for the continuous-time process inl) over {1, t] is intimately related to the
evolution of the diffusive coefficient(t), which is also known as the spot volatility. bcf,
given the i.i.d. nature of the return innovatiorvgmed by the Brownian motion process, the
return variation should be related to the cumugaiiwmtegrated) spot variance. It is, indeed,
possible to formalize this intuition: the condit@rreturn variation is linked closely and —
under certain conditions in an ex-post sense — lequdahe so-called Integrated Power
Volatility of orderr (IPV),

IPV(t) = J‘_laf (9ds (1.4)

as the sampling frequency increases. In other wdindsestimation error of the realized power
volatility diminishes. Here, denotes a positive value.

In order to get a discrete approximation to fA&(t), Barndorff-Nielsen and Shephard (2003)
propose the realized power variation of orde¢X, X)rp, as a proxy for the true integrated
power volatility as

(KXo =Y, - (L.5)
§

wherei=1,...n is ith intraday observation with an integeandr is a positive value. Her&;

is a price observed on dayt timei which follows the price process (1.1), and —Y;, gives

a return of high frequency prices which follows2(1.Definitely wherer=2 in (1.5), the
realized power variation would approximate the albed Realized Volatility as introduced by
Andersen and Bollerslev (1998) and Andersen et(Z001b). In this case, the result of
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realized power variation considerably strengthdémsduadratic variation result that realized
quadratic variation converges in probability to efgiated Volatility, IV(t)=li_16*(s)ds

(Barndorff-Nielsen and Shephard, 2003). Realizedvgsovariation theory covers also
Realized Absolute (RA) variation in which casdl (Barndorff-Nielsen and Shephard, 2003).

According to (1.4) and Theorem 1 in Barndorff-Nezisand Shephard (2003), the realized
power variation of order, (X, X)rp, computed from the highest frequency datan(as )
should provide the best possible estimate for nkegrated power volatility. However, this is
not the general point of view adopted in the ersplrfinance literature. In practice, sampling
at the very high frequency (for example higher taminute frequency) leads to a well-
known bias problem due to market microstructureseojZhou, 1996 and Andreou and
Ghysels, 2002). It is generally accepted that #tarn process should not be sampled too
often (Zhang et al., 2005); since the market micoosure effects intervene to cause noise
and hence a bias of estimation due to for exantpebid-ask bounce, when applying very
high frequency data in real situations.

To cope with the problem of market microstructufeects when approximating realized
power variation, a successful alternative apprbaziled Two-Scale Realized Volatility
(TSRV), based on a subsampling and averaging puoedths been proposed by Zhang et al.
(2005). Their device, constructed based on a sdqueaesformation of returns, is model-free
too and takes advantage of the rich sources ofyetick data, and to a great extent corrects
for the adverse effects of microstructure noisevalatility estimation. However, on one side,
according to the literature, for example Ding et (40993), Forsberg and Ghysels (2005),
Andersen et al. (2006) and Ghysels et al. (200&quared transformation of returns in a
TSRV model in turn reinforces jumps to appear itatitity series as large values. Thus, this
model seems theoretically not to be robust againgps, meanwhile construction of volatility
based on realized power variation with absolutasfi@mation is somewhat robust to rare
jumps (Barndorff-Nielsen and Shephard, 2004a), artigular in case of=1 (or Realized
Absolute variation). On the other side, their apgtocan be seen as a specific case of what
we are trying to explain; since realized volatilityseen as a specific case of realized power
variation as stated above. Therefore, in this kgae generalize the TSRV approach on the
broader realized power variation. In summary, eeali power variation suffers from
microstructure noise in particular in the form agtrer bias, and TSRV suffers from jumps in
the form of higher variance at higher frequencies.

To solve the problem of the market microstructufeats, inspired by the TSRV modeling of
realized volatility and the robustness of absottaesformation of power variation, the Two-
Scale realized Power Volatility (TSPV) measure ssuemed to be consistent for integrated
power volatility (IPV), (1.4), at very high frequeyn The TSPV estimator of volatility should
be robust against jumps, since it is based on atesatansformation inspired by realized
power variation, and should be unbiased againstasticicture noise inspired by two-scale
procedure, since it is built on a bias-correctothrod.

! There are many approaches to correct the micaisteinoise, including for example a kernel-basmdection
introduced by Zhou (1996), an optimal samplingadtrced by Bandi and Russell (2006), a moving aeerag
filter introduced by Maheu and McCurdy (2002), amoaegressive filter introduced by Bollen and In2002),
and of course a subsampling and averaging apprioaciduced by Zhang et al. (2005). However, it basn
experimentally shown by Ghysels and Sinko (2008} the subsampling and averaging class of estimator
predicts volatility the best among microstructuoése correctors.
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A realized correlation estimator is also drawn dase the TSPV estimator which seems to be
more sound. An observable correlation model whiebsthot fail to describe stylized facts as
much as possible, observed in financial time seisdsere desired.

The paper is organized as follows: Starting withalired squared volatility, in section 2, we
construct realized volatility and correlation measu In section 3, applying minute-by-

minute frequency exchange rate data, the meastgemvaluated by simulation. In section 4,
some distributional and dynamic properties of messware experimentally studied. It is
shown that the volatility series are far from amar distribution. However, in a relative

sense, absolute based volatility measures arerdlms®mrmal distribution, because they react
less sensitively to jumps. Two self-similar dime&ms which statistically indicate regularity

and dynamic properties of measures are investigaiée distributional and dynamic

behaviors of correlation measures are also compdredection 5, relationship between
realized volatilities and realized correlations studied. In section 6, the results are
summarized and discussed.

2. REALIZED VOLATILITY AND CORRELATION MEASUREMENTS

Merton (1980) showed that the integrated volatibfya Brownian motion (1.3) and hence
(1.4) over a fixed interval can be approximatecatoarbitrary precision using the sum of
intraday squared returns, provided the data ardable at a sufficiently high sampling
frequency. More recently Andersen and Bollersle998) and Andersen et al. (2001b),
applying the quadratic variation theory, generaiteas result to the class of special (finite
mean) semimartingales. This class encompassessgexeaised in standard arbitrage-free
asset pricing applications, such as, Ito diffusjgasp processes, and mixed jump diffusions.
In fact, under such conditions, the sum of intrasigyared returns converges to the integrated
volatility of the prices, as the maximal lengthrefurns goes to zero, allowing us, in principle,
to construct an error free estimate of the actwddtility over a fixed-length time interval
(Engle and Bollerslev, 1986). The standard debinitior an equally spaced returns series of
the Realized Squared (RS) volatility over a timenwal is

T

(X, X)rs= D, (Yti+1 -Y, )2 (2.6)

§
where(X, X )rsis the estimated realized squared volatility, ndith 0 =tg <t; <...<t=T, IS
an observed log transformed high frequency price foriancial asset.

Ding et al. (1993) found that not only there is stabtially more correlation between absolute
returns than returns themselves, but the powesfivamation of the absolute returd, |- Y;[’,
also has quite high autocorrelation for long ldgss possible to characterizé | — Y;|" to be
long memory and this property is strongest whes around 1. This result appears to argue
against ARCH type specifications based upon squatedns. Granger and Sin (2000) treated
observed absolute return as a measure of risk stganobserved (conditional) conventional
variance and explored its forecastability. Theyl@opmodels using two measures to three
stock indices, and reported that the model apphieabsolute measure largely outperforms the
alternative model applied to variance both in-s@ampgbodness of fit and post-sample
forecastability. The distribution theory for quatitavariation under the continuous sample
path assumption has been extended to cover curaikbsolute returns raised to an arbitrary
power. The leading case involves cumulating absoheturns of high-frequency. These
quantities display improved robustness propertéetive to realized squared volatility as the
impact of jumps are mitigated. Limit theorems walso derived for measures, called realized
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power variation, over a fixed interval of time, t& number of high frequency increments
goes to infinity by Barndorff-Nielsen and Sheph&2603). Indeed, they presented a theory,
in particular, for the use of sums of absolute nefufor example, the analysis of volatility
models using high frequency information and turbaée and image analysis. Based on a
simulation with different number of daily obsenats, they found that the realized power
variation version of the statistic has much befitgte sample behavior, while the realized
quadratic variation behaves quite poorly. Measbrghk on absolute values are less sensitive
to possible large movements in high frequency dlbt&re is evidence that if returns do not
possess fourth moments then using absolute vaddiesrithan squares would be more reliable
(Barndorff-Nielsen and Shephard, 2003).

As mentioned above, Barndorff-Nielsen and Shepk2003) introduced the estimator based
on power returns which they call Realized Power)(RBasure(X, X)rp, in the form of (1.5)
with a positiver and the same previous notation. Again Barndoréidéin and Shephard
(2004a) and Barndorff-Nielsen et al. (2004b) exezhthe estimator of Realized Power (RP)
measure to the wider versions, called realized vioegsp multipower, normalized and
generalized multipower variations.

In order for dealing with microstructure noise flésg, for example, to the bias problem of
sampling at a very high frequency and for incregsiocuracy of measure, Zhang et al. (2005)
have introduced the Two-Scale Realized Volatilisgimmator (TSRV), which combines the
realized squared volatility estimators from two ¢iscales. The volatility estimat¢¥, X )rsgryv
combines the sum of squared estimators from twigreifit time scalestX, X)ayg from the
returns on a slow time scale, wheré&sX)rsis computed from the returns on a fast time
scale using the latter as a means for bias-comredtthe subsampling and averaging based
measure. The(X, X)ayy estimator is constructed based on subsampling aretaging
procedure.

Motivated by superiority of realized power voldyilmeasure (RP) in relative less variation,
on one hand, and benefits of subsampling and awverdigequencies procedure in the Two-
Scale squared Realized Volatility (TSRV) for deglimith microstructure noise, on the other
hand, we extended Safari and Seese (2008) a radaser volatility measure to the Two-
Scale realized Power Volatility (TSPV) estimator fotegrated Power Volatility (1.4). The
bias of the estimator TSPV can be lessened bywerging on samples. The TSPV has less
variation relative to TSRV, in particular wherel, since it is less sensitive to the large points
in a given time series than squared values.

In order to prescribe the TSPV estimator, at fingt subsampling method has to be shortly
illustrated. The method looks like the Jackknifetmoe. The goal of reducing bias of
estimation for a statistic in two methods seemsstiiae. Efron and Gong (1983) conclude
that like the bootstrap, the Jackknife can be applo any statistic that is a function of $n$
independent and identically distributed variableperforms less well than the Bootstrap but
requires less computation. The Jackknife resamjblesstatistic at the points. Efron and
Gong (1983) state that the Jackknife is almost at8rap itself. Goncalves and Meddahi
(2005) propose bootstrap methods for statisticduated on high frequency data such as
realized volatility.

The subsampling method includes two time scales fast and one slow. Lgt’ be a disjoint
subset of the full set of observation times withonng andn be the number of sampling
intervals over [O[]. Here an averaging estimator is defined basedebecting a number of
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subgrids of the original grid of observation timgss {to,..., t,}, and then on averaging the
estimators derived from the subgrids. We suppose¢ tine full gridg, g={to ,..., tn}, IS
partitioned intoK non-overlapping subgridg®, k=1,...K. It is easy to define an average
estimator according to the subgrids. The averagiea®r, (X, X)ay, iS defined on a slow
scale estimator as

_ 1 r
<X, X)avg = —z z Yti+1 _Yti (27)
A=
and, in a special case when the sampling pointeegrdarly allocated, as
_ 1 '
(X, X)avg :E z thy Tt (28)

Lt
whereg® is a subset of the full set of observations.

We then estimate the Two-Scale realized Power MioyaTSPV), (X, X )rspy by
_ _ noo
(X, X)1spv= (X, X)avg— o (X, X)rp (2.9)

and when a small-sample adjustmen%])i is needed, by

(X, X)rspv= (PEJ (X X)avg— %(XTX ) (2.10)

where(X, X)rp is simply computed in (1.5) on a fast scale. Afpuad theoretical justification
for application of the subsampling method in theaaof realized volatility can be found in
Zhang et al. (2005).

The benefits of a high frequency realized volatibipproach for measuring, modelling and
forecasting univariate volatilities may motivateeaio construct similarly realized covariance
and correlation. By the theory of realized variatidndersen et al. (2001a) and Andersen et
al. (2001b) also derived realized standard deviafRG.=((X, X)r9" logarithmic standard
deviation,RSsa = ¥2.10gX, X)rs covarianceRCOV,=Y{ (Vi., — Yo)x (Y., — Yi)y; and realized
squared-based correlatidRSCOR,, as follow

RSCOR, = RCORy /(RSt4xRStd,y) (2.11)
wherex andy are two assets or high frequency time series.

If the idea of an extension of high the frequeneglized volatility approach to the measures
of covariance and correlation is already convingitigen the extension of absolute-based
realized volatility to absolute-based realized emtion would apparently seem a promising
of this idea. Also the subsampling and averagiruggadure, in order to enhance precision and
to reduce microstructure noise problems and hemedits problem, may help to realize the
purpose of constructing time-varying realized caare and correlation which are more
robust to jumps and may be more predictable. Squaaasformation instead of absolute one
for constructing a measure of correlation mighdléa overestimation in correlation. Thus,
based on absolute transformation, in Safari ands&€2008) we derived absolute-based
realized standard deviatioRAx=(X, X)ra)” (note (X, X)ra=(X, X)rp Wherer = 1), logarith-
mic standard deviatiorRAs=Y2.10gX, X)ra, covarianceRCOM=Y1 (Y., — Yix (Vi — Yoy,
and realized absolute correlatiG®®ACORy, as follows

RACORy = RCORy /(RA:wd,xRAstd,y) (2.12)
wherex andy are two assets or high frequency time series. Wie that covariance remaines
the same. Also these measures could simply be @dedeto measures based on subsampling
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and averaging procedure, so that we will haM8AV=((X, X)tsa)” (note thatr=1),
TSAV=Y2.l0gX, X )rsau andTSCOV, as follows

n

whereRCOVy a1 is the same aBCOV,, built on the all scale (the full grid). He¢&, X )rsavis
the same agX, X)rspywherer=1. In case of need for the small-sample adjusherterm can
be multiplied by the right hand of (2.13). HREO\y avgCan be computed by

1 K
RCOMyav=-—>, D (%, ~Y)u(%, — V), (2.14)

k=1 ., 509"

The Two-Scale Absolute CorrelatioRSACOR, (based om=1), is computed as follows

TSACOR, = TSCOVy /(TSAVgxTSAV,y (2.15)
whereTSACOR, denotes the time-varying and instantaneous camgiticorrelation between
the returns of two time serigsandy.

In the next section, we evaluate the asymptoticvemgence and unbiasedness of the
estimators by simulations. The RP and TSRV estirsatioe compared with TSPV just in a

special case of=1 for RP and TSPV and of2 for TSRV. Therefore, RA and TSRV are

considered as benchmarks for TSAV.

3. SAIMULATION EXPERIMENTS

The GARCH(1,1) model has appeared as a base foelmgdvolatility in financial time
series, as it tends to provide a simple estimatotihhe main statistical features of the return
series across a wide range of assets. For theaiowlpart of the present work, we advocate
Andersen and Bollerslev (1998) and Andersen et(1899b) and establish the diffusion
foundation for analysis. Following Nelson (1990)dabrost and Werker (1996), the
continuous-time diffusion limit of the GARCH(1,1)adel is given by
dp = Utd\Nl,t (3.16)

do? = 0(w- o?)dt + (246) " 52dW,, (3.17)
whereW;; andW,; denote independent standard Brownian motions. wicg to Drost and
Werker (1996) the discretely sampled returns fréwe ¢ontinuous-time process defined by
Egs. (3.16) and (3.17), satisfy the weak GARCH(indylel

J(zm),t = ¢m + amr(fn),t—ljm + ﬁmo-(zm),t—llm (318)
with m observations per day wheredg: = Pimy1m (Fin.) denotes the best linear predictor
of r(zm),t. Note that here in this paplef.sq),t has different alternatives defined previouslyirby,
(2.6) and (2.10). The relationship between therdisetime parametergn, am, andpy, with
the continuous-time parametars § andA may be obtained in closed form, as outlined by
Drost and Werker (1996). Hence, in this weakerrprtation a GARCH(1,1) specification
for any discrete frequency is compatible with thigudion in Egs. (3.16) and (3.17), and in
this sense the setting provides a coherent framevaoranalysis of the model forecasts at
different sampling intervals. Now, following Ba#liand Bollerslev (1992) thHeperiod linear
projection from the weak GARCH(1,1) model with mis that span i day(s) is
conveniently expressed as

2
P(m),t(r(i/h),ﬁh) = P(m),tU: zr(m),t+j/mj| ]: _ Z P(m),t(r(ilh),ﬁj/m)

i=1...,mh j=1...mh
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= Z [a(zm) + (am + ﬁm)j (a(zm),t - a(zm))]
j=1...,mh

= I‘nha-(zm) + (am - ﬁm)[l_ am - ﬁr;nh] X [1_ am - ﬁm]_l(a(zm),t - J(zm)) (319)
wheredfr = Gm(1—tmhm)

As for market microstructure noise, advocated by Barndorff-Nielsen et al. (2004b)ndia
and Russell (2005), Zhang et al. (2005) and Harss&h Lunde (2006) and recalling our
assumptions about price and return processes, sugnasthat it follows a Gaussian process
and is small. We assume a pure noise (i.e., neiseéd. and independent with the efficient
price). Specifically, we set €)”=0.005, i.e., the standard deviation of the ncés@.05% of
the value of the variable of interest.

Like Andersen and Bollerslev (1998) and Anderseal e€1999b) our theoretical assessment
of performance of the discrete-time GARCH(1,1) appnation in Eq. (3.19) for predicting
the subsequent realized volatility models defingdhe stochastic volatility diffusion in Eqs.
(3.16) and (3.17) rely on numerical means. More#igally, sample-path realizations of the
underlying stochastic volatility diffusion are oisted via simulation using an Euler scheme.

Based on our daily real world data sample of Eugillkexchange rate from June 1, 2006 to
August 23, 2007, we estimate the parameters ofraamis-time GARCH(1,1) models (3.16)
and (3.17) equal t6=0.0241 (Std Error=0.0128, T stat.=9.60#¥%3.3e-007 (Std Error=3.1e-
007, T stat.=7.003), an0.8325 (Std Error=0.0430, T stat.=27.014) witk®692 by MLE
parameter estimation. The GARCH parameters ared fige the values obtained from
maximum likelihood estimation based on real daibgervations of the Euro/USD exchange
rate for simulation. Random variables are generbte®MATLAB. For generating data, we
assume 252 working days a year as usual and gerdatat at different frequencies according
to Table 3.1. The simulations are based on 5 yeadata samples and 8,000 sample paths
(realizations). For all three alternative estimafowe assume equally distance sampling
interval.

The values are transformed into logarithm form. eAftsimulations the residuals are
standardized in further estimations. The resultsohte Carlo simulation in terms of RMSE
and bias in Table 3.1 show how the estimators agevéo the integrated variation across
frequencies when the sampling interval is goingditminish. Comparing the rows reveals
asymptotic convergence in small sample distributMoreover, the following table shows a
different behavior of estimators.

As expected by the theories of realized volatidihd realized power variation, the variance of
all estimators diminishes as the frequency incieaS$éerefore, all measures converge in
terms of RMSE. This implies that the estimatorsa@mesistent for the targets, i.e., Integrated
Volatility (in our special case of order 2 for TSR\Me.,r=2) and Integrated Power Volatility
(in our special case of order 1 for RA and TSA¥,,it=1). Hence, the estimators converge
asymptotically as the frequency increases. Thisvremence is consistent with Zhang et al.
(2005) and Barndorff-Nielsen and Shephard (2003oAparison between estimators gives
some information. There are obvious differencesvben the estimated RMSE errors of
different estimators, since the estimators are egging in different rates. In fact, absolute
based estimators converge faster in terms of RNI#fierences in convergence rates are akin
to the fact that the absolute based estimatorsnagently somewhat immune against jumps
in a relative sense. Consistent with Zhang et 200%), the subsampling and averaging
method leads to a difference between RA and TSAMIms of variation.
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TSRV RA TSAV

Frequency at every - - -
quency YRMSE Bias RMSE Bias RMSE Bias

60 min.  0.3826 0.0083 0.3602 0.0213 0.3519 0.0079
30 min.  0.3815 0.0072 0.3486 0.0214 0.3483 0.0057
15 min.  0.3503 0.0060 0.2772 0.0215 0.2731 0.0053
5min. 0.3103 0.0031 0.1882 0.0230 0.1863 0.0025
1 min. 0.2907 0.0025 0.1036 0.0236 0.1034 0.0019
30 sec. 0.2599 0.0019 0.0765 0.0239 0.0704 0.0015
15sec. 0.1323 0.0015 0.0432 0.0243 0.0430 0.0009
10 sec. 0.0815 0.0012 0.0112 0.0245 0.0109 0.0006
5sec. 0.0117 0.0009 0.0039 0.0248 0.0038 0.0004
1sec. 0.0095 0.0006 0.0003 0.0249 0.0002 0.0002

Table 3.1 Results of simulation (values*1000).

Consistent with the literature, the table simplpwh that realized power volatility of order 1
(RA) is not an unbiased estimator of realized povegiation as the frequency increases. Even
the bias of the estimator is increasing acrossrdgencies caused by market microstructure
frictions. From the table based on simulation, el fthat the bias grows almost less than
linearly in the number of intraday observationsgwhve consider RA estimator. This finding
suggests that market microstructure noise is al@dsitear direct function of observations or
frequencies. This condition, however, is somewh#ierént around 5 minute frequency.
Nonetheless, the bias of both subsampling and gveydased estimators converges to zero
as the frequency increases. This is consistent thightheory mentioned above. Both TSRV
and TSAV estimators are an unbiased estimator dalized volatility and realized power
volatility. Meanwhile the bias of estimators can c@mpared. Considering both bias and
variation of the estimators, TSAV estimates itsetrintegrated power volatility (IPV)
consistent and unbiased relative to others.

In the following section, distributional and dynamiproperties of measures will
experimentally be compared. Since there existsvmestale realized squared correlation, we
compare the results of measures with realized squaaised correlation.

4. EMPIRICAL BEHAVIORS OF MEASURES
4.1. Data and Facilities

The empirical evidence suggests that daily realiz@dtility serves as a simple, yet effective,
aggregator of the volatility information inherentthe intraday data (Andersen et al., 2006).
For this section, our empirical analysis is basedreturns of Euro/USD and Euro/GBP
exchange rates at every 1 minute frequency. Oupkatime series cover a period from June
1, 2006 to August 23, 2007. Both exchange ratescansidered as a market with a high
degree of liquidity and very active. We define ratwf an exchange rate b, — Y; =
log(Y:,,) — log(Y:), which is the return from holding the currencadimet; to timet;.1, where

Y; is the observed exchange rate value.
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All computations and estimations in this work h#men facilitated by the use of the software
R, a system for statistical computation and graphéecsl of the libraries therein including
e1071, fBasics, tseries, and KernSméoth

Statistic Euro/lUSD Euro/GBP
Minimum -5.58e-03 -6.07e-03
Maximum 5.61e-03 5.70e-03
Mean 1.31e-07 -4.78e-08
Median 0.00e+00 0.00e+00
Sum 5.72e-02  -2.09e-02
Variance 3.88e-08 1.92e-07
Skewness 1.15e-01 -2.21e-02
Kurtosis 1.31e+01 3.97e-01

Jarque-Bera tes 2.2e-16  2.2e-16

Table 4.2 Basic statistics and tests for return time sdniexchange market.

Some more important descriptive statistics of anretseries are contained in Table 4.2.
Positive mean of return in Euro/USD explains anrage positive return trend. In particular,
an excess kurtosis with positive skewness in El8®UJand low kurtosis with negative
skewness in Euro/GBP obviously show our time setegzart from normality. Leptokurtosis
in returns of Euro/USD is a sign of heavy tail is distribution. This implies that there is a
higher probability for extreme events than in d#tat is normally distributed. Negative
coefficient of skewness for Euro/GBP (-0.022) sewescribes that our probability density
function is negatively skewed. Therefore the disttion is asymmetric to the left side.
However, the skewness coefficient for Euro/USD 18)lindicates an asymmetry to the right
side. Jarque-Bera té€br normality simply reveals that the time seneéh p-value equal to
2.2e-16 do not form a normal distribution.

4.2. Distributional Properties of Volatilitiesand Correlations

Considering the fact that volatility is now effealy observable and measurable, based on
squared or absolute values and subsampling proeedwe can characterize their
distributional properties with relying on convemt#d statistical procedures. Then, comparison
of empirical distributions of different measures ¢e simply implemented.

Time series of realized volatility measures caltdabased on (2.6), (1.5), and (2.10) with
r=1 are depicted in Figure 4.1. Actually the figumeveils that volatility, constructed by all
realized measures, is time-varying. This is in @sitto the conventional approach which
views the volatility as constant.

2 More information about included packages, docusemd downloading source codes can be found on:
http://www.r-project.org.

% Note that the Jarque-Bera test of normality igliikthe most widely used procedure for testing radity of
economic time series returns. The algorithm prawvidgoint test of the null hypothesis of normalitythat the
sample skewness equals zero and the sample kuztpsids three.
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Figure 4.1 Time series of realized volatility measures carded based on squared, absolute, and two-scale
absolute transformations. They show daily volatiieries for Euro/USD and Euro/GBP. Evidently witgtis
viewed time-varying.
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A simple comparison of realized volatilities, congul based on models (2.6, 1.5, and 2.10)
for Euro/lUSD and Euro/GBP, with a traditional camgtvariance using Tables 4.2 and 4.3
detects that all realized measures tend to repaoldtility higher than a constant value.
However in Table 4.3, the mean of RS realized dlats smaller than that of two others.

Euro/USD Euro/GBP
Statistic — — — — — —
(X, X)rs (X, X)ra (X, X)1sav (X, X)rs (X, X)ra (X, X)rsav
Mean 5.06e-05 1.88e-01 1.87e-01 2.51e-04 0.434 0.434

Median 4.74e-05 1.86e-01 1.86e-01 2.65e-04 0.453 0.452
Variance  2.24e-10 6.80e-04 6.78e-04 4.79e-09 0.005 0.005
Skewness 1.09e+00 5.88e-01 6.11e-01 -2.95e-01 -1.12 -1.12
Kurtosis 1.68e+00 3.08e-01 4.81e-01 2.11e+00 0.697 0.691
Jarque-Bera2.2e-16 2.6e-05 4.7e-06 9.9e-16 2.2e-16 2.2e-16

Table 4.3 Basic statistics and tests of realized volatilitgasures.

Based on exchange rate data, Andersen et al. (200dhd that the distributions of realized
daily variances are skewed to the right side aptbleurtic. In line with this finding, based on
stock exchange data, Andersen et al. (2001a) alsfirm that the unconditional distributions
of realized variances are highly right-skewed. Vb#tilities of Euro/USD in Table 4.3 are
rightward too. But all volatility measures in caseEuro/GBP show leftward skewness. A
part of values of Euro/GBP rate, as can be obsdarnvédyure 4.1, lies below the average for a
while and will form leftward asymmetry. Four momemf realized volatility measures plus
median are included in Table 4.3. Skewness andéigriof measures determine in more
detail, none of the measures possess exactly aahdistribution. In terms of the Jarque-Bera
test for normality reported in the table, none adasures hold normal distribution. With p-
values equal to or smaller than 2.6e-05, normddityall measures is significantly rejected.
However, a relative comparison may include infotweatacts. In case of Euro/USD rate,
skewness coefficients for absolute based volatitigasures are close together and closer to
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that of a normal distribution than that for squafeased measure. Because of this, the
normality in absolute based measures in Euro/U$®isanot rejected as strongly as in square
based measure. The main reason for the differemom@ the distribution of volatility series
may most likely be akin to different sensitivity jomps. According to Andersen et al.
(2001a) squared returns approach, over the relessgtnotn horizon, provides model-free
unbiased estimates of the ex post realized vdiatllinfortunately, however, squared returns
are also a very noisy volatility indicator and hendo not allow for reliable inference
regarding the true underlying latent volatility. r&ruction of realized volatility based on
squared transformation seems not to be immune stggimps. In turn, this kind of
transformation can be considered as a source argeng higher jumps in a series. In fact,
squared based volatility measures reinforce jump<riginal series. However, realized
volatility constructed by absolute transformaticeess relatively to be more monotonous.
These arguments are also confirmed by Figure fh&.shapes show heavy tails. Presence of
big jumps in squared based volatility is obviouslydent in Figure 4.2. As such, these jumps
lead the time series of measure to form a longemtalistribution. The distribution holding
the longer tail among others in Figure 4.2 is syngistinguishable. These jumps are the
cause of greater positive skewness coefficientigoright side) for Euro/USD in Table 4.3.
Overall all daily time series of measures shapad &f non-normal distribution, but absolute
based series seem closer to normal. A part of thiedengs is in agreement with that of
Andersen et al. (2001a). Of course, this phenonmeas well documented as the fact of
markets where the distribution of relative priceampes is strongly non-Gaussian: these
distributions can be characterized by power laus taith an exponent close to 3 for rather
liquid markets. Emerging markets have even moreemdé tails, with an exponent that can be
less than two - in which case the volatility isimie (Bouchaud, 2002). We will study this
phenomenon in detail under dynamical propertiem@dsures below.

Figure 4.2 Empirical cumulative distribution plots for Eurd@D and Euro/GBP seem skewed rightward and
leftward respectively. However, the shapes arehsame. Asymmetry degree seems different amolagjlity
series. Relative big positive jumps are presene@afly in RS volatility.
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Since the most commonly used measure to analyzevements and cointegration among
international financial markets is correlation as#éd; realized correlation is applied on 1
minute frequency exchange rates. Based on modédl$,(2.12, and 2.15) our study is focused
on correlation between the returns of the previtine series. In our analysis, both series
belong to very developed, active and liquid markatmain difference of our correlation with
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that of traditional analysis includes variation dmhce likely dynamics of realized measure
over time. In Figure 4.3, some distributional pntigs of different realized correlation
measures are graphically embodied. First row mafdicitly imply that realized correlation
series, against classical formulation of correlatiare time-varying, what is a profound
property of many financial phenomena, and that thay have some dynamics. Their kernel
density can be found in the second row of plotsAAdersen et al. (2001a) and Andersen et
al. (2001b) reported the distributions of standegdirealized squared correlation between 5
minute stocks and between 5 minute exchange ratesapgproximately normal. In our
experiment here on 1 minute frequency data,RB€OR, and RACORy correlation series
provide a normal distribution.

Figure 4.3 Distributional properties of realized correlatidmstween Euro/USD and Euro/GBP are graphically
embodied. Evidently realized correlations, basediimt row plots, fluctuate over the time. The @ations
oscillate almost around zero mean. The RS and Rgedaorrelations possess a near symmetric density
approximately with zero mean, while density of thier is positively skewed. These findings are more
informatively supplemented by QQ-normal plots. B&8 and RA based correlations seem to shape a horma
distribution.
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Table 4.4 reports some basic distribution-relatéatistics of realized correlations. All
correlations have a positive medRSCOR, in particular, shows the highest correlation
between returns of the rates on average and haacgrbngest degree of integration between
markets over our time perioRACORy and TSACOR, correlations behave relatively more
stable over the time, since they have much lessanva thanRSCOR, correlation.
Comparing both mean and variance of different datiens, we observe the&RSCOR,
correlation shows a stronger (based on mean value),at the same time, more unstable
(based on variance) relation between markets. B&8GOR, and RACOR, correlations are
slightly skewed to the right side. But rightwarceskess off SACOR, measure is relatively
considerable. Regarding to the Table 4.4, the pesbf Jarque-Bera test for null normality
test are statistically significant at the 5 perclaviel for RSCOR, and rather foRACORy
correlations. Normality imf SACOR, correlation series can not be significantly acedpt

Based on rather high skewnessST&#ACOR, correlation, we found that positive asymmetry is
present in the conditional realized correlationtrihsition. If relationship between markets
complies theTSACOR, correlation, then based on our data, upside comewés are greater
than downside ones.
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Statistic RSCOR, RACOR, TSACOR,
Mean 2.75e-03 1.03e-06 1.84e-08
Median -5.16e-04 -1.84e-07 8.44e-09
Variance 1.10e-03 1.61e-10 4.41e-14
Skewness 1.61e-01 1.60e-01 2.07e+00
Kurtosis 2.26e-01 1.68e-01 1.53e+01

Jarque-Bera tes 0.315 0.379 2.2e-16

Table 4.4 Basic statistics and test of realized correlations

Figure 4.4 Autocorrelation function and long memory autoctatien function plots (ACF and log-log) of
volatilities, computed based on returns on Euro/U&fda. For all functions of both kind of autocoaten
function and long memory autocorrelation functitme number of lags is equal to 70. The top row fggoto
the RS measure, the middle to RA, and the bottomSAV. Left plots are autocorrelation functions aight
ones are long memory autocorrelation functions. &stimated Hurst exponents (self-similarity pararjein
the long memory process for RS, RA, and TSAV aspeetively equal to 0.76, 0.79, and 0.81.
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4.1. Dynamic Behaviour of Volatilitiesand Correlations

Behavior analysis of the estimators, for examptagy of stylized facts of financial time
series could be interesting and informative. Fomeouseful information about several
stylized facts refer to Cont (2001). Now, issudatesl to dynamic behaviors of measures are
extracted by detailed examinations with particfitaus on the long memory and scaling law.

In Figures 4.4 (for Euro/USD) and 4.5 (for Euro/GBBn the left panel, autocorrelation
function (ACF) plots and on the right panel, longmory plots for realized volatilities have
been drawn. Ding et al. (1993) and Andersen andeBb¢v (1997) have argued that the
autocorrelations of squared and absolute returnaydat a much slower hyperbolic rate over
longer lags. Consistent with these authors, theréig almost identically indicate a slow decay
in autocorrelation over time for all measures. Lamgmory may be a very interesting
signature for series dynamics. Usually it is spo&kEa long memory behavior, if the decay in
the ACF is slower than a hyperbolic rate, i.e. ¢berelation function decreases algebraically
with increasing (integer) lag. Thus it makes settséanvestigate the decay on a double
logarithmic scale and to estimate the decay expo&aphically, if the time series exhibits

87



Safari and Seed@ehavior of realized volatility and correlation @axchange markets

long memory behavior, it can easily be observed agaight line in plot on the right panels
of Figures 4.4 and 4.5. Corresponding long memdoyspof volatility series in Figures 4.4
and 4.5 show a slow decay for measures, meanwbsiel@te based measures indicate longer
memory numerically estimated by Hurst exponentsctvhwill explained below. So, the
volatility measures include long memory behaviomadynamic stylized fact of market. This
finding at 1 minute frequency is consistent witlodd empirical experiments on tickers
included in NASDAQ by Andersen et al. (2001a) andDiM/US dollar and Yen/US dollar
exchange rates by Andersen et al. (2001b) bothminbite frequency.

Figure 4.5 Autocorrelation function and long memory autoctatien function plots of volatilities, computed
based on returns on Euro/GBP data. For all funstmfrboth kind of autocorrelation function and lamgmory
autocorrelation function, the number of lags isiteably equal to 70. The top row belongs to RS mea, the
middle to RA, and the bottom to TSAV. Left plot®autocorrelation functions and right ones are Imegnory
autocorrelation functions. Estimated Hurst expor{eelf-similarity parameter) in long memory procéssRS,
RA, and TSAYV are respectively equ‘f'ilF to 0.68, Oaf] 0.71.
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Another striking fact of markets is the regularcted structure of the financial series in the
sense of Mandelbrot (1986). This is illustratedtbg scaling laws usually reported for the
volatility time series under aggregation. The swalaw for the volatility relates the volatility
over a time interval to the size of this intervll. other words, considering the average
absolute return over individual data periods, ands a scaling power law which relates the
mean volatility over given time intervals to theesiof these intervals. The power law is in
many cases valid over several orders of magnitadéme. Its exponent usually deviates
significantly from a Gaussian random walk model avhimplies 0.5. This other implication
of self-similarity and long memory associated wittactional integration concerns the
behavior of variance of partial sums. In particulat [X]: = >'j=1,..n} Xn.¢-1)+, denote théa-fold
partial sum process fot, wheret=1,2,...,[T/h]. Then, ifx is fractionally integrated, the partial
sums obey a scaling law,

Var([x]n)= ch®** (4.20)
wherec is a constant, and is scaling parameter. The variance of realizeétidy should
grow at raten®*. Scaling parameter refers to the elasticity oftitty series with respect to
the timescale. Estimated parameters for Euro/USDegual to 2.04, 2.14, and 2.13; and for
Euro/GBP to 1.94, 1.96, and 1.97 in the structofeRS, RA, and TSAV volatility measures
respectively. Figure 4.6 illustrates that all voiis in Euro/USD and Euro/GBP follow a
regularity based on which log variance of partiainsproportional to log variance of the
whole period; and that the plots of scaling lawJotfatilities are almost similar to each other.
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Like for the Hurst exponent, this regularity algonsilates one to think of predictability in
financial markets.

Figure 4.6 A scaling law plot of realized volatilities disgkregularity based on which partial sums of vitgti
against the time intervals follow the scaling lavhis regular behavior is also considered as astizl self-
similarity in volatilities time series. The left pal indicates Euro/USD and the right one, Euro/GBiPst,
middle, and bottom rows belong to RS, RA, and TS#latilities respectively. Since all points in Hoare
close to the red line, scaling law exists in allatitities. Estimated parameters for Euro/USD ayead to 2.04,
2.14, and 2.13; and for Euro/GBP equal to 1.946,1a8d 1.97 in the structures of RS, RA, and TSA\Atility

measures respectively.
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A self-similar series statistically means that siaistical properties for the entire data set are
the same as for sub-sections of the data set.Her atords, the self similar dimension of
fractional integration is invariant to the horizdfrom the slope of log-log plot in Figures 4.5
and 4.6, an exponent called Hurst exponent is ddriJsually the Hurst exponent is
considered as the statistical self-similarity paggan (dimension) in the structure of a
financial time series. The Hurst exponétit,can be defined dd:=log(R/S)/log(T), whereT is
the duration of the sample of data, && is the corresponding value of rescaled range. In
this way, Hurst (1951) and Hurst (1955) generalizedequation valid for the Brownian
motion process in order to include a broader otdgsne series. In fact, Einstein studied the
properties of the Brownian motion and found that tfistanceR covered by a particle
undergoing random collisions is directly _?g%porﬁbm the square-root of time

R=kT"
wherek is a constant which depends on the time series.gEneralization proposed by Hurst
was

R/IS= kT" (4.21)
where H is the Hurst exponent. Estimating the Hurst expbrfer a data set provides a
measure of whether the data is a pure random walk®underlying trends. The values of the
Hurst exponent range between 0 and 1. A Hurst exovalue within a range of 0.5H< 1
indicates persistent behavior (e.g., a positiveo@utelation and hence a long memory).
Furthermore, the closét is to 1, the stronger the dependence of the psase®ata sets like
this are sometimes referred to as fractional Brawmnotion. A value of 0.5 indicates a true
random walk (a Brownian time series with no autoelation). The fractal dimension is
directly related to the Hurst exponent for a stadly self-similar data set. In a random walk
there is no correlation between any element anduad element. A small Hurst exponent has
a higher fractal dimension and a rougher surfacdarger Hurst exponent has a smaller
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fractional dimension and a smoother surface. A Hexponent value 0 & < 0.5 will exist

for a time series with anti-persistent behaviorrfegative autocorrelation). Here an increase
will tend to be followed by a decrease and invegrs€his behavior is sometimes called mean
reversion. There are many estimators that are tsedstimate the value of the Hurst
parametél Estimated Hurst exponents by R/S method are equal76, 0.79, and 0.81 for
Euro/USD and to 0.68, 0.70, and 0.71 for Euro/GBRhe structure of RS, RA, and TSAV
volatility measures respectively. As an exampla isimulation study for an artificial capital
market, the Hurst exponent for the prices generhtethe trading of the agents is estimated
between 0.65 and 0.71 (Schlottmann and Seese,.189axt, there is the strong evidence to
suggest that volatility is a long memory processisistent with Andersen et al. (1999a).

An investigation of the fact that if the patternrsdaemporal dependencies of comovements
across equity markets behave regularly, can heip two. Existence of such regularities
imply the dynamics of correlation series. We arevnoterested to find regular patterns in
correlations, if there are any. Considering Figug a long autocorrelation (ACF plot) in the
structure oRSCOR, andRACORy has been now completely disappeared. Based dorne
memory autocorrelation plot in Figure 4.7, a tenabdependence fBRSCOR, andRACORy

can not be reported. Of coursESACOR, seems to keep still its dynamic properties. It
exhibits the long memory dependence with Hurst eepbequal to 0.92.

Figure 4.7 Autocorrelation function and long memory autoctatien function plots (ACF and log-log) of
correlations between Euro/USD and Euro/GBP. Fofualttions of both kind of autocorrelation functiand
long memory autocorrelation function, the numbelagt is equal to 300. The top row belongRBCOR, the
middle toRACOR,, and the bottom td SACOR, correlation. Left plots are autocorrelation funos and right
ones are long memory autocorrelation functions. &sgmated Hurst exponent (self-similarity paramete
long memory plot forTSACOR, is equal to 0.92RACOR, and RSCOR, exhibit no long memory and
consequently have no Hurst exponent.
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The calculated points in scaling law plots RBCOR, andRACOR, correlations are far from
the estimated red line in Figure 4.8. It is notgibke to fit a straight line which links all points
and hence the corresponding plots can not showdaléng law. However, the plot related to
TSACOR, correlation shows well scaling law property witabng parameter equal to 1.93.

* Some more common methods include Absolute valuitaude Variance method, R/S method, Periodogram
method, Whittle estimator, Variance of residuafg] Abry-Veitch method.
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Analyzing 40 series of returns, Taylor (1986) okesrthat the sample autocorrelations of
absolute returns seem to be larger than the saapbeorrelations of squares. Dgit=1,....T

be the series of returns angk) denotes the sample autocorrelation of okdef ly;[’, 6 > 0;
the Taylor Effect can be definedgk) > ry(k) for anyé # 1. The autocorrelations of absolute
returns to the power of theta reach their maximund & 1. In Figure 4.8, plots display
autocorrelations as a function of the exportefur each lag from 1 to the maximum lag (e.g.,
10 lags). In case that the above formulated hymsighe supported, all the curves should peak
at the same value aroufid= 1. Figure 4.8 indicates that none of the cuimesorresponding
plots forRSCOR, andRACOR, correlations reach their pinnacle aroshd 1 and the points
are distant from vertical line @f = 1. In contrast, the plot related to t(i@ACOR, measure
exhibits somewhat Taylor Effect.

Figure 4.8 According to scaling law plots in left pandISACOR, has a high performance of dynamics. The
points on a scaling plot f{dRSCOR, andRACOR, correlations are far from the estimated line aadde they
can not show the scaling law. The estimated expoiseequal to 1.93 iTSAVCOR, correlation series. The
Taylor effect plot indicates that Taylor Effect &t& in a series, where the curves peak at the \aatuendo=1
which is on the x axis. Top, middle, and bottom sdwelong tRSCOR, RACOR, andTSAVCOR, correlations
respectively. This effect is presentT®ACOR, correlation regarding to the number of lags wtichrbitrarily
selected to be equal to 8. In t(ABACOR, correlation, the Taylor Effect plot peaks arodkd with 1 lag against

with no lag for both other correlations
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The Hurst exponent and scaling law promise a gleatmope for predictability in financial
markets which seemingly sound unpredictable atualitler the efficient market hypothesis;
since they show well regularity in chaotic and kestic behaviors of particles or agents.
Peters (1996) suggests that a Hurst exponent \wdtieeen 0.5 H < 1.0 shows that the
efficient market hypothesis is incorrect. Returns @ot randomly distributed. There is some
underlying predictability. But the problem of estiting the Hurst exponent itself, involves a
complex problem of accurate calculation. Moreowee, are not certain about a especial
variable of interest to be a representative fodjotability of the market. In our investigation
here, volatility reflects regularity in market. Bas reported by many, for example Ding et al.
(1993), original prices do not show such the regfylaat least by Hurst exponent, among
statistics. It is now well established that thecktonarket returns themselves contain little
serial correlation which is in agreement with tticent market theory. But this empirical
fact does not necessarily imply that returns adependently identically distributed as many
theoretical financial models assume. It is posdihét the series is serially uncorrelated but is
dependent. For the stock market data is espedallgince if the market is efficient, a stock’s
price should change with the arrival of informatidhinformation comes in bunches, the
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distribution of the next return will depend on praws returns although they may not be
correlated. As the return period increases, thermetalues reflect longer trends in the time
series. Perhaps the higher Hurst exponent valaetiglly showing the increasing upward or
downward trends. This does not, by itself, showt tiie efficient market hypothesis is
incorrect. Even if we accept the idea that a nomdoan Hurst exponent value does damage to
the efficient market hypothesis, estimation of thast exponent seems of little use when it
comes to time series forecasting. At best, the Hexponent tells us that there is a long
memory process. The Hurst exponent does not prathidelocal information needed for
forecasting. Nor can the Hurst exponent provide hafca tool for estimating periods that are
less random, since a relatively large number o# gatints are needed to estimate the Hurst
exponent. For example a constant Hurst exponenttovwe also does not seem a sound and
reasonable conclusion. However, this statistic lbanuseful in analyzing the behavior of
market models.

5. RELATIONSHIP BETWEEN VOLATILITY AND CORRELATION

A study on multivariate relationship between estoms in particular, volatility and
correlation estimators, can help to figure out wketand howl'SAV and TSACOR, move
together. Such questions are difficult to answéngisonventional volatility models, but they
are relatively easy to address using the time-ugryealized volatilities and correlations. A
strong evidence has been observed that realizediliteds and correlations move together.
Realized correlation is itself correlated with readl volatility, which is called the volatility
effect in correlation\{IC) (Andersen et al., 2001a).

Andersen et al. (2001b) estimate a kernel dengitglationship between realized correlation
and logarithmic realized standard deviation whems niredians of both logarithmic realized
standard deviations of Deutsche Mark and Yen &g fkan a threshold equal to -0.46 and
when both are greater than -0.46 and show denstgikaitions of high volatility days differ
from that of low volatility days. Huang and NiehO() approximate a linear regression and
show a positive relationship between realized ¢ation and volatilities significantly. To do
this task, we have to turn back to the conventideethniques which fail to formulate directly
observable instantaneous and contemporaneousorship. We intend to estimate a simple
linear least square regression. It is assumedthieatealized correlation follows the realized
volatility. In Table 4.5, the results of linear regsion estimation are reported. In an
experiment, the realized correlation between redlizolatility of returns on Euro/USD and
on Euro/GBP is modeled to follow the realized wititgt of returns on Euro/USD and in
another experiment, on Euro/GBP exchange rate.eiifit estimators of volatility and
correlation are considered.

In the first experiment, different results in terofsthe type and intensity of the relationship
were obtained, while P-values for parametargconstant value) ant (slope) for three
estimators, particularly in case AafSAV are high. The relationship between realized
correlation and volatility in case of Euro/USD ra¢stimated to be negatively strong (-67.93
for parametetb) based orRS estimator and to be negatively mild (-2.2e-05)elshsn RA
estimator. Meanwhile, the relationship is repotiete positive (6.1e-07) bySAVestimator.
As a matter of fact, according to the latter relasihip, when the Euro/USD exchange market
is highly volatile (measured by realized volatilitghe relationship (measured by realized
correlation) between the two markets (Euro/USD Bocb/GBP) becomes stronger, and when
the Euro/USD market goes to calm down, the assoni#ietween the markets goes to relax.
So, two markets tend to be highly correlated wienBuro/USD market is highly volatile and
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inversely. A similar correlation effect in volatyli was documented for international equity
returns by Solnik et al. (1996).

RS RA TSAV

Model
Parametel P-value Parameter P-value Paramete P-value

Corr=f(vol. of returns on Euro/USD):parameter 0.0062 0.33 5.1e-06 0.31 -3.4e-08 0.78
Corr=f(vol. of returns on Euro/USD):parameter -67.93 0.56 -2.2e-05 0.42 6.1e-07 0.56
Corr=f(vol. of returns on Euro/GBP):parameter 0.0058 0.39 3.1e-06 0.46 4.6e-07 7.4e-07
Corr=f(vol. of returns on Euro/GBP):parameter-12.21 0.64 -4.8e-06 0.62 -1.7e-06 3.2e-06

Table 4.5 Results of regression estimation: Correlation asation of volatility.

In the second experiment, it is assumed that theledion between Euro/USD and Euro/GBP
is associated with the volatility in Euro/GBP exoba market. As the table reports, existence
of such the relationship is rejected by the twdescaeasure, since the p-values are very small
(for example 3.2e-06 for paramet®dt However, a negative relationship in termsR8and
RAmeasures is meaningfully approximated.

6. CONCLUSION AND DISCUSSION

The study of some important distributional and dyitaaspects of different alternative
realized volatility and correlation measures was #gtore of the present article. The
distribution of realized squared volatility tenaskte highly rightward skewed. The two-scale
realized absolute volatility measure is so formedathat more accuracy and less bias is
additionally added to the realized absolute vatgtineasure by inclusion of sampling and
averaging procedure while applying higher frequedaya contaminated by microstructure
noise. Here, market microstructure noise is effetyi damped by constructing K series of
aggregate returns of K samples which are then usedompute K intermediate and
inconsistent estimators that will be averaged t@iob at last, the desired consistent estimator
and to be improved by bias-corrector term. Likewibee Jackknife method resamples the
statistic at then points. The estimators investigated in this paerconstructed based on the
subsampling method. Goncalves and Meddahi (20@gze bootstrap methods for statistics
evaluated on high frequency data such as realinéatinty. However, application of other
bias-corrector methods, in particular, the Jackknifethod is worthy to investigate further in
the area of realized volatility. A comparison offelient methods for bias-correction may
reveal some valuable results.

Regarding to our 1 minute data of exchange ratespraparison of different volatility
measures suggests that daily realized absolutal badatilities appear closer to the normal
distribution relative to realized squared basedatidity. However, none of investigated
measures absolutely pose a normal daily distrinuésted by Jarque-Bera test of normality.
In our experiments, we found that absolute basdatility measures include longer memory
behavior as a dynamic stylized fact of marketfialgh squared based measure exhibits long
memory behavior too. Self-similarity structures gaited by the Hurst exponent and regular
fractal scaling law were documented in the strwsupf series generated by realized
measures.

The normality of two-scale based correlation cah v accepted. But the realized squared
and absolute correlations are viewed to pose aesbhthe normal distribution, and in terms
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of the Jarque-Bera test the normality can not fected. According to our experiment, two
latter correlations seem to fail containing dynaigperties such as long memory as well as
scaling law. While two-scale based correlation meassuffers from non-normality,
autocorrelation, long memory and scaling law, whidve been well documented in real
world time series processes, are included in itgcgire. This may mean predictability in the
market by this measure. According to our empingatk, we could document statistical self-
similarity dimension estimated by a Hurst parameemell as a fractal structure illustrated
by scaling law as another implication of self-semiy structure in ouT SACOR, correlation
measure. Strong positive asymmetry Ti®SAVCOR, correlation implies that upside co-
movements are greater than downside comovementedeimarkets.

Time-varying volatility and correlation measuregeofa good tool for more profound analysis
of, for example, association between volatilitiesl aorrelations. We found that when the
Euro/lUSD market is highly volatile, relationshiptiween the Euro/USD and Euro/GBP
becomes stronger, and when the Euro/USD time sgoes to calm down, the association
between the markets goes to relax.
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