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ABSTRACT 

 
The large majority of the criteria for model selection are functions of the usual variance 

estimate for a regression model. The validity of the usual variance estimate depends on 

some assumptions, most critically the validity of the model being estimated. This is often 

violated in model selection contexts, where model search takes place over invalid models. 

A cross validated variance estimate is more robust to specification errors (see, for 

example, Efron, 1983). We consider the effects of replacing the usual variance estimate 

by a cross validated variance estimate, namely, the Prediction Sum of Squares (PRESS) in 

the functions of several model selection criteria. Such replacements improve the 

probability of finding the true model, at least in large samples. 
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1. INTRODUCTION 

 

In applied work, model selection is a frequently occurring problem of great importance, as 

forecasts, conclusions, interpretations, etc. frequently depend critically on the particular 

model selected from the range of models examined. Most often, model selection is done by 

mechanical application of one or several of the criteria that have been developed for this 

purpose
1
. The large majority of these criteria assess regression models using a function of the 

usual estimate of error variance and the model dimension. Different criteria are based on 

different functions, but all use the usual variance estimate, 2̂ . The usual estimate is valid only 

if the model is correctly specified, and this assumption is especially dangerous in model 

search situations where we will inevitably search over incorrectly specified models. Efron 
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 Some authors, such as Amemiya (1980), or Judge et al. (1985), have argued against such mechanical model 
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is also possible to use forecast combination and avoid selection; see Zaman (1984) and Diebold (1989) for 

discussion and further references. In this paper, we will ignore these alternatives. 
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(1983) finds that a cross validated (CV) variance estimate 2~  is more robust to specification 

errors. Because of this, we may expect that the performance of model selection criteria can be 

improved by replacing the usual variance estimate by a CV variance estimate in their 

functions. Another motivation for trying 2~  instead of 2̂  comes from noting that the CV 

residual r'i can be computed as r'i = ri /(1 − hii), where ri is the OLS residual and hii is the i-th 

entry of the hat matrix X(X'X)
−1

X'. Thus CV replaces the OLS residual by the ‘almost 

unbiased’ residual suggested by Horn, Horn, and Duncan (1975). MacKinnon and White 

(1985) found that this replacement substantially improves heteroskedasticity consistent 

covariance matrix estimates. Our results show that model selection criteria are similarly 

improved by this replacement. 

 

In this paper we consider Autoregressive (AR) models so the problem of model selection 

becomes the problem of choosing the lag order. We compared model selection criteria having 

the form )ˆ( 2f  with )~( 2f , replacing 2̂  by 2~ . In comparing the two forms, we consider the 

probability of selecting the true model. Since results depend on the sample size used and the 

value of the regression coefficients we present results for different sample sizes and different 

coefficient values. In this paper, we study replacing the usual variance estimate by a CV 

variance estimate in the functions of several popular model selection criteria. The criteria used 

for this aim are Akaike Information Criterion (AIC; Akaike, 1973; Akaike, 1974), Schwarz 

Criterion (SC; Schwarz, 1978; Rissanen 1978), Hannan-Quinn Criterion (HQC; Hannan and 

Quinn, 1979; Quinn, 1980) and a bias corrected version of AIC presented in Hurvich and Tsai 

(1989) which is denoted as AICC.  

 

Our Monte Carlo results show that the probabilities of estimating the true model where CV 

variance estimate is used in the functions of criteria are better for large sample sizes. Also 

when a large value of coefficient is chosen for the highest order of the true model, using a CV 

variance estimate is better. The highest improvement from the replacement is obtained when 

it takes place in the function of AICC. When we consider the probabilities of overestimation, 

we see that criteria containing CV variance estimate rather than the usual variance estimate in 

their functions are more parsimonious. In section 2, we describe CV estimate of variance in 

detail. Section 3 presents the model that we base our Monte Carlo study. In section 4 we have 

the simulation results where the probability of estimating the lag order is under consideration. 

Finally in section 5, we have some concluding remarks. 

 

2. CROSS-VALIDATED VARIANCE ESTIMATE 

 

Efron (1983) shows that the error rate of a predictive rule is underestimated if the same data 

used to both construct and to evaluate the rule. The residual ri = yi − ŷi underestimates the true 

error at i since the i-th observation has been used in fitting the equation
2
. One way to reduce 

the problem is to use r'i = yi − ỹi, where ỹi is the forecast of yi based on a regression which 

excludes the i-th observation (namely jackknifing). This procedure is described as the LOO 

(leave one out) CV method (Rao and Wu, 2001), as the predictive residual by Allen (1974) or 

simply as Cross-validation (Efron, 1983; Li, 1987). Allen names the sum of squares based on 

these residuals the Prediction Sum of Squares (PRESS) and suggests it as a basis for model 

selection. Allen's (1974) PRESS is equivalent to CV (Rao and Wu, 2001). 

 

                                                 
2
 One way to see this is to note that RSS( ̂ ) < RSS(  ) - the residual sum of squares is minimized by ̂  so that 

it must be smaller than the true residual sum squares based on the true parameter  . 
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In Arlot and Celisse (2010) it is stated that as T (sample size) tends to infinity the bias of LOO 

stays of order T
−1

 and is generally minimal compared with V-fold CV and bootstrap (Davison 

and Hall, 1992; Molinaro et al., 2005). Shao (1993) showed that minimizing the LOO CV 

estimate for multiple linear regression (MLR) lead to a statistically inconsistent choice of the 

true model. With large sample sizes, LOO CV identifies the variable subset belonging to the 

true model, but it also selects additional variables. This means that minimizing the LOO CV 

estimate results in overfitting and thus in a larger prediction error. However, Li (1987) 

showed that under some conditions, the LOO CV is consistent and is asymptotically optimal 

in some sense. According to Linhart and Zucchini (1986) CV provides a technique for 

developing an estimator of an expected discrepancy which need not be bias adjusted. Another 

argument for the small variance of LOO in regression was provided by Davies et al. (2005), 

with the log-likelihood contrast: assuming a well specified parametric model is available, the 

LOO estimator of the risk is the minimum variance unbiased estimator of its expectation. 

 

We will define the cross-validate variance estimate as 2~ = (T – K)
–1

∑
T
t=1 r'i 

2
 = PRESS/(T – K). 

Amemiya (1980) shows that r'i = ri /(1 − hii), where ri is the i-th OLS residual, and hii is the i-th 

diagonal entry of the hat matrix X(X'X)
−1

X'. Thus the predictive residuals are equivalent to the 

nearly unbiased residuals of Horn, Horn, and Duncan (1975).  

 

Hurvich and Tsai (1989) include PRESS in their Monte Carlo study where they compare finite 

sample properties of several different model selection criteria for regression models. AICC 

which is a bias corrected version of AIC suggested by the authors turns out to be the best 

criterion and performance of PRESS and other criteria are close to each other. Başçı (1998) 

shows that PRESS performs poorly because of its failure to penalize higher dimensional 

models. Magee and Veall (1990) have also considered and compared the use of PRESS and 

also White’s t-statistics in model selection. Magee and Veall (1990) show that the PRESS and 

the White’s t-statistic approximate each other. Li and Hui (2007) and Lang et al. (2007) use 

PRESS for selecting predictors using stepwise forward variable selection method to optimize 

the outcome prediction. In Billings and Wei (2008) a new adaptive orthogonal search 

algorithm is proposed for model subset selection and non-linear system identification, where 

the adjustable prediction error sum of squares (APRESS) is introduced and incorporated into a 

forward orthogonal search procedure. Christopher et al. (1998) or Peng and Wang (2007) add 

that the lower the difference between the PRESS value and the regression’s sum square of 

error value, the more stable the model’s predictive power. Özkale and Kaçıranlar (2007) 

propose and investigate PRESS statistic for selecting the biasing parameter d in Liu (1993) 

estimator. There are many examples that use PRESS in their analysis, for example, Xinjun 

(2010), Jabri et al. (2010), Xiongcai and Sowmya (2009), Nikolic and Agababa (2009), Neri 

(2009).  

 

In Piepho and Gauch (2001), a simulation study is conducted to study the merits of AIC, 

AICC, AICU (McQuarrie and Tsai, 1998), SC, HQC, HQC (McQuarrie and Tsai, 1998), FPE 

(final prediction error; Akaike, 1973,), FPEU (McQuarrie and Tsai, 1998), FPE4 (Bhansali 

and Downham, 1977), RP (Breiman and Freedman, 1983), CP (Mallows, 1973), GM (Geweke 

and Meese, 1981) and PRESS for marker pair selection that uses model selection criteria for 

multiple linear regression. On the basis of their results, PRESS is not the best criterion for 

model selection. They note that that there exist several asymptotic equivalence relationships 

between FPE and PRESS. Wang and Schaalje (2009) note in their comparison that 

characteristics of the data, such as the covariance structure, parameter values, and sample size, 

greatly impacted performance of various model selection criteria. In their conclusion they 

state that none of AIC, SC, R
2
, PRESS was consistently better than the Concordance 
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Correlation Coefficient (CCC) (Lin, 1989) criterion. Collett and Stepniewska (1999) some 

variable selection procedures used in conjunction with fitting logistic regression models are 

summarized and their performance investigated using a simulation study. They compare the 

performances of AIC, SC, modified CP, MD (mean deviance), Mχ
2 

(mean χ
2
) and PRESS. In 

this simulation the PRESS statistics has values that is sometimes considerably below the 

values of these performance measures for the other criteria. 

 

As an alternative to the CV variance estimate 2~ , we could consider the bootstrapped 

variance estimate, recommended by Efron (1983). Efron shows that bootstrapping generally 

gives better results than CV. However, he shows that for smooth functions, CV behaves like 

the bootstrap. Since the sum of squared residuals is a very smooth function, and substantially 

simpler to compute, we prefer the use of CV to bootstrapping in the present example. 

 

3. MONTE CARLO DESIGN 

 

We describe first the Monte-Carlo design used for our comparison of the PRESS criterion 

with other methods of model selection. We restrict ourselves to the context of selection of the 

true order in an autoregressive model. Assume that the T × 1 vector of observations Y is 

generated from an AR(p) process (allowing for nonzero mean a0): 

 Yt = a0 + a1Yt-1 +…+ apYt-p + ut  

where ut have a common distribution of F. We assume that there is a maximum possible lag 

order M. The econometrician wants to estimate lag order p, where p must be between 1,…, M. 

In this paper, we concentrate on the model where error terms are generated from a normal 

distribution. Results for the case where error terms are generated from a skewed distribution 

can be found in Başçı (1998). There, the criterion AIC is under consideration and it is shown 

that for a skewed distribution case there still exists improvements over AIC from substituting 

the CV estimates of variance into the function of AIC but these improvements are less than 

the improvements that we obtain for normal distribution case presented in this paper. See also 

Başçı and Zaman (1998) for a study of effects of skewness and kurtosis on model selection 

criteria. 

 

4. COMPARISONS WITH TRADITIONAL CRITERIA 

 

A standard method for model selection is to start with the largest model and drop the highest 

order insignificant lag (where significance is measured by the t-statistic). The process is 

repeated until the last lag is significant, and this model is chosen. It is agreed upon that the 

best model is the one with the smallest residual variance, and for this reason it would be 

sensible to use 2̂  as a measure for model performance. This one of the elements of Hendry's 

methodology (see, for example Hendry, 1995), and the standard error of the regression ̂  is 

frequently used as a measure to assess the performance of model. 

 

4.1. Dimension Six 

 

In our first Monte Carlo, we assess the performance of these two traditional criteria and 

compare them with 2~ . For the two variance estimators we pick the model yielding the 

smallest variance. For the t-statistic we pick the largest model for which the highest order lag 

is significant - assessing significance by the criterion that t > 2 is significant. Aside from 

simplicity, Magee and Veall (1995) show that if the t is based on a heteroskedasticity adjusted 

covariance estimate, this rule should be asymptotically equivalent to the use of the PRESS 

criterion for model selection. We set a1 = a2 = 0.5 and vary a3 from 0.1 to 0.5 in steps of 0.1; 
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a4 = a5 = a6 = 0 and M = 6. Figure 4.1 below gives the probability that a model of dimension 6 

is selected - in some sense, the probability of the biggest mistake, for the three criteria under 

study. In each graph, the y-axis gives the probability of selecting the model of dimension 6, 

while the x-axis is the sample size, which varies from 10 to 200 in steps of 5. 

 
Figure 4.1 Probability of Selecting Dimension 6 

 
 

The results from this Monte Carlo were quite surprising to the authors. The OLS variance 

appears to have an asymptotic probability of about 20%, and small sample probabilities are 

roughly around this number as well. This is a huge probability of selecting a model which is 

quite far from and quite easily distinguishable from the true model for a sample size of 200. 

This clearly explains why, despite its intuitive plausibility, practitioners do not rely on 2̂  for 

model selection. It has a huge probability of overestimating the size of the lag, and is 

generally known to favor large models. The behavior of the usual t-statistic is quite predicable 

and in accordance with theory. In large samples the event t > 2 occurs with probability 4.6% 

under the null hypothesis. Since the true coefficient of the sixth lag is exactly 0, we expect 

that the t > 2 method will choose the six dimensional model around 4.6% of the time. The 

observed probabilities are closer to 5% because the dynamic model, and variation in the 

degrees of freedom with sample size, makes the t an approximate rather than exact 

distribution. 

 

The major surprise was the behavior of the PRESS, or 2~ . Its probabilities of selecting a 

model of dimension 6 stay comfortably under those of the t-statistic (averaging 2.8% over the 

cases studied), and are radically different from those of 2̂ . Since 2̂  and 2~  are both 

convergent to the true 2  for the true model asymptotically, we did not expect such a huge 

difference in performance relative to model selection. Based on these results, we would 

recommend the routine use of 2~  to replace 2̂  in conventional regression statistics. It would 

be well worth exploring the higher order asymptotics to account for the differences between 
2~  and 2̂ . Based on the Magee and Veall (1995) paper, we expected roughly equivalent 

performance for the PRESS and t-statistic, but were surprised to see that PRESS handily 

outperforms the t-statistic as well. 

 

4.2. Overestimation Probabilities 
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We graph below the probabilities of overestimating the dimension of the model. The case of 

dimension 6 has already been discussed, and the graphs below give the probabilities of 

selection for dimensions 5 and 4. 

 
Figure 4.2 Probability of Selecting Dimension 5 

 
 
Figure 4.3 Probability of Selecting Dimension 4 

 
 

The case of dimension 5 is quite similar to dimension 6. The usual variance estimate 2̂  

selects this model with probabilities around 16%, substantially worse than the 4% selection 

probabilities for the t > 2 rule. However the best performance is put in by the PRESS variance 
2~ , with probabilities near 3% . 

 

The case of dimension 4, which is one more than the true dimension, leads to a deterioration 

in the performance of PRESS. It now selects this model with probabilities nearing 8% , more 

than the 4.5% achieved by the t > 2 rule. There is an exception to this when a3 is small, 
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reduces the probability selection dimension 4 below that of t. Heuristically, we could say that 

for models of dimensions two or more over the true dimension, 2~  is better than t > 2. When 

a3 is small, the 4 dimensional model comes close to being two over the true dimension and 

hence 2~  has better performance. Note that the value of a2 should have little or no effect on 

the performance of the t > 2 rule since the t rule tests the significance of a4 which is exactly 0. 

As before, the standard variance is hopeless in comparison to these two, having probabilities 

around 16%. 

 

4.3. Correct Dimension Estimation Probabilities 

 

Figure 4.4 gives the probabilities of selecting the correct dimension for the three criteria under 

study. Generally the performance of 2~  and the t > 2 rules are similar, with the former being 

slightly superior, over the range of situations studied. Generally, in larger samples and for 

larger values of a3, 2̂  is substantially inferior. However, in small samples and with small 

values of a3, 2̂  can be superior to the other rules. This does not recommend 2̂  to us, since in 

such situations the probability of finding the true model is low anyway.  

 
Figure 4.4 Probability of Selecting Dimension 3 

 
 

4.4. Underestimation Probabilities 

 

For models of dimensions 1 and 2, both less than the true model, the probabilities of selection 

go to zero for all three criteria under study. For T > 75 the probabilities were close enough to 

zero for all three that the graphs in Figures 4.5 and 4.6 have been truncated at T = 75. 

Generally the probabilities of underestimation decline to zero rapidly for all three, and the 

performance of the PRESS variance 2~  is similar to the t > 2 rule. The usual variance estimate 
2̂  compensated for it tendency to overestimate by have smaller probabilities of 

underestimation than the other two rules. 

 

4.5. Large Sample Probabilities 

 

While 2~  and the t > 2 rule have similar performance, they do not appear to be asymptotically 

equivalent. To test whether the Magee and Veall (1995) equivalence holds, we tried replacing 
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the standard t statistics with the (asymptotically equivalent) White t-statistics, but found only 

trivial differences in their performances.  

 
Figure 4.5 Probability of Selecting Dimension 2 

 
 
Figure 4.6 Probability of Selecting Dimension 1 

 
 

The standard t-statistics are constructions from the covariance estimate 2̂ (X'X)
-1

, the White t-

statistics use the covariance estimate (X'X)(X'DX)
-1

(X'X), where D is a diagonal matrix of 

squared OLS residuals - better results are obtained by replacing OLS residuals et by the Horn, 

Horn and Duncan almost unbiased residuals e't =et /(1 - ht). We also tested the use of 2~ (X'X)
-1

 

as a basis for the t-statistics. However, all variant forms of the t-statistics gave essentially the 

same result, with around 4.6% probability of selecting the model of dimension 6. The cross-

validated variance estimate performs significantly better than all variants of t-statistics which 

we tried. 
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To get a better picture of asymptotics, we did a few large samples, ending up with the 

following probabilities displayed in Table 4.1. In large samples, none of the three criteria 

underestimates the model. The conventional variance estimate 2̂  is hopeless, with only a 

47% probability of estimating the true model, and a 21% probability of estimating a model of 

dimension 6. While the rule of choosing t > 2 and the PRESS variance estimate 2~  have 

similar probabilities of choosing the right model, there is an important and interesting 

difference in overestimation probabilities. Since the null holds for models higher than the true 

dimension, the probability of rejecting the null in each of the higher dimensions is about the 

same, around 4.6%. However, use of 2~  leads to a rule which appears to be consistent - the 

probability appears to decline to zero for dimension 6, and is headed that way for dimension 

5. To compensate, dimension 4 (one more than the true dimension) is estimated to be the true 

model more often by 2~  relative to the t > 2 rule. It is worth noting that the pattern of 

overestimation probabilities of 2~  is much preferable to that of the t > 2 rule - when the 

wrong model is selected it is helpful if it is only slightly bigger than the true model. The t > 2 

rule picks all three larger models with roughly equal probabilities. 

 
Dim= 1 2 3* 4 5 6 

2̂  0.00 0.00 0.47 0.16 0.16 0.21 
2~  0.00 0.00 0.89 0.08 0.03 0.01 

t > 2 0.00 0.00 0.88 0.04 0.04 0.05 

Table 4.1 T = 400 Model Selection Probabilities. 

 

Since it appears clearly desirable to use a consistent rule, the Monte Carlo study leads us to 

prefer 2~  to the t > 2 rule. If t-statistics are to be used, we should avoid a mechanical fixed 

significance level, as it leads to an inconsistent rule for model selection. It is possible to 

devise schemes for changing significance levels with sample size so as to achieve consistency 

in large samples. It is clear that the Magee and Veall (1995) asymptotics do not hold in this 

model. Indeed it is easy to establish that there local-to-zero assumption is not valid for the 

Monte Carlo setup we describe. If a2 is sent to zero in a suitable way we could recover the 

Magee and Veall asymptotics. 

 

5. IMPROVING ON PRESS 

 

We have demonstrated that the PRESS variance 2~  is substantially superior to the 

conventional variance estimate 2̂  and somewhat superior to the convential t > 2 rule for 

model selections. On this basis, it would clearly be worthwhile to include 2~  (indeed, even 

replace 2̂ ) in statistics on a conventional regression printout. Nonetheless, the performance 

of the PRESS variance estimate is not satisfactory from an absolute point-of-view. Achieving 

only 89% probabilities of selecting the correct model in large samples, where this probability 

should be close to 100% is not quite satisfactory. Since the underestimation probabilities 

converge to zero, we conclude that lack of consistency of PRESS is cause by overestimation - 

the probability of selecting a model of dimension larger than the true model is too large. To 

reduce this problem, we should penalize the choice of higher dimensional models more 

heavily than is done by PRESS. 

 

How should we select a penalty factor to improve the performance of PRESS? Nearly all 

model selection criteria (AIC, BIC, Schwartz, etc.) are based on adding a dimension penalty to 

the usual estimate of the variance. Since PRESS is also a variance estimate, it seems logical to 

try these various penalties in the hope of improving the performance of the PRESS. Lütkepohl 

(1985) compares the finite sample performances of 12 different identification approaches for 
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AR models in a Monte-Carlo study. In his study, SC and HQC emerge as being the best 

among the compared criteria. AIC, also performs well. For this reason we consider these 

criteria in our study. Also these criteria are very popular among the practitioners. SC, HQC 

and AIC have similar functional forms. They all include the logarithm of the usual variance 

estimate but they add to it different linear penalty factors. AICC suggested by Hurvich and 

Tsai (1989) also contains logarithm of the usual variance estimate but it contains a nonlinear 

penalty factor. We also consider AICC in our study to see the effect of a nonlinear penalty 

factor. In Başçı and Zaman (1998) the performance of this criterion in terms of probability of 

estimating the true model is studied for normal variables. The results there show that AICC is 

the best criterion for small samples. Given a model selection criterion of the form MSC( 2̂ ), 

we define the cross-validated form MSCCV as MSCCV=MSC( 2~ ). This substitution yields the 

following four new model selection criteria:  

 AICCV(k) = ln 2~
k  + (2k)/T  

 SCCV(k) = ln 2~
k  + k ln(T)/T  

 HQCCV(k) = ln 2~
k  + 2k ln(ln(T))/T  

 AICCCV (k) = T ln 2~
k  + T [1+(k/T)]/[1–(k+2)/T]  

 

Our hope is to eliminate or reduce the overestimation problem of 2~  by incorporating these 

penalties. In addition, we hope to check whether the model selection criteria can be improved 

by replace the conventional variance estimator with the PRESS estimator. Comparisons are 

made of the probability of selecting the true model and also of the relative forecasting 

performance of the models selected by the different criteria.  

 
Figure 5.7 Probability of Selecting Correct Dimension 

 
 

5.1. Correct Dimension Probabilities 

 

Figure 5.7 shows the effects of modifying the four model selection criteria on the probability 

of estimating the correct dimension (namely 3) in the setup already described earlier. For all 

four criteria, the probability of selecting the correct dimension are improved in large samples. 

It is well-known that the AIC is inconsistent -- the graph shows that the AIC probability is 

converging to about 89% . It is quite surprising that replacing 2̂  by 2~  changes the AIC into 
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a consistent criterion. Large sample gains from the substitution are around 10%, and the 

probability of selecting the correct model appears convergent to unity. The Schwartz Criterion 

is consistent to start with. It is also improved by the substitution in large samples but the 

difference is quite minor - around 1% typically. For the HQC, which is also consistent, the 

gains are around 3% in large samples. The bias-corrected AIC, labelled AICC, improves the 

most by the substitution. Its probabilities of selecting the correct model almost double, from 

44% to 88%. This is mainly because the AICC appears to be quite poor compared to the other 

criteria. Nonetheless, it is quite surprising the simply replacing 2̂  by the asymptotically 

equivalent PRESS variance estimate improves all the model selection criteria, sometimes 

substantially.  

 

It is important to note that these improvements are only available in large samples, for 

sufficiently large values of a3. Furthermore, the improvements are minor for the best of the 

four criteria, namely the SC. In small samples, and for small values of a3, there can be 

substantial loss (up to 20% in some cases) in the probability of correctly estimating the 

dimension. We would conclude from this that one should use the unmodified Schwartz 

criterion for model selection if the probability of correctly selecting the true model is the 

major goal. We can never tell if the coefficient of the highest lag is exactly zero, or merely 

close to zero. In the latter case, the modified Schwartz (using 2~  instead of 2̂ ) can be 

substantially inferior to the unmodified form, while in the former case, the modified version 

yields only trivial gains over unmodified form. 

 
Figure 5.8 Probability of Overestimating Dimension 

 
 

Figure 5.8 gives the 'overestimation' probabilities for both the Schwartz criterion and the 

modified Schwartz criterion based on the PRESS variance. It reveals that the overestimation 

probabilities are substantially smaller for the modified Schwartz in all cases considered - 

small and large a3 as well as small and large sample sizes. It is well-known that forecasting 

quality does not correlate very well with probabilities of correct estimation; see Başçı (1998) 

for some discussion and references. There is an interesting tension between model selection 

required in finding the true model and model selection for forecasting; see for example 

Diebold (1989) for discussion and references. For the purposes of model selection as required 

by Hendry's methodology, it is better to choose a model which is too big (and hence nests the 

true model) rather than too small (and hence misspecified). For forecasting, the reverse holds. 

Extraneous regressors reduce precision of estimates and lead to poor forecasts - the bias 

introduced by dropping regressors with small coefficients tends to be small in comparison. 
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This suggests that the modified Schwartz criterion may be superior to the original one on 

forecast quality. This issue can be examined in another work. 

 

6. CONCLUSION 

 

In this paper, we studied using CV estimate of variance, 2~ , instead of the usual estimate of 

variance, 2̂ , in the context of model selection problem. Also a comparison with t > 2 criteria 

takes place. Specifically, we used an Autoregressive (AR) model so the problem of model 

selection became the problem of lag order determination. In our simulation study we 

investigated the probabilities of selecting higher dimension, true dimension and lower 

dimension. The results obtained can be summarized as follows: 

 

1. For dimension six, the usual estimate of variance, 2̂ , appears to have an asymptotic 

probability of choosing this dimension about 20%, and small sample probabilities are 

roughly around this number as well. It has a huge probability of overestimating the 

size of the lag. The behavior of the usual t-statistic is quite predicable and in 

accordance with theory. In large samples the event t > 2 occurs with probability 4.6% 

under the null hypothesis. The major surprise was the behavior of the PRESS, or 2~ . 

Its probabilities of selecting a model of dimension 6 stay comfortably under those of 

the t-statistic (averaging 2.8% over the cases studied), and are radically different from 

those of 2̂ . 

 

2. The case of dimension 5 is quite similar to dimension 6. The usual variance estimate 
2̂  selects this model with probabilities around 16%, substantially worse than the 4% 

selection probabilities for the t > 2 rule. However the best performance is put in by the 

PRESS variance 2~ , with probabilities near 3%. 

 

3. The case of dimension 4, which is one more than the true dimension, leads to 

deterioration in the performance of PRESS. It now selects this model with 

probabilities nearing 8%, more than the 4.5% achieved by the t > 2 rule. There is an 

exception to this when a3 is small, reduces the probability selection dimension 4 below 

that of t. Heuristically, we could say that for models of dimensions two or more over 

the true dimension, 2~  is better than t > 2. As before, the standard variance is hopeless 

in comparison to these two, having probabilities around 16%. 

 

4. For the case of selecting the correct dimension for the three criteria under study, 

generally the performance of 2~  and the t > 2 rules are similar, with the former being 

slightly superior, over the range of situations studied. Generally, in larger samples and 

for larger values of a3, 2̂  is substantially inferior. However, in small samples and 

with small values of a3, 2̂  can be superior to the other rules. This does not 

recommend 2̂  to us, since in such situations the probability of finding the true model 

is low anyway. 

 

5. For models of dimensions 1 and 2, both less than the true model, the probabilities of 

selection go to zero for all three criteria under study.  

 

6. In large samples, none of the three criteria underestimates the model. The 

conventional variance estimate 2̂  is hopeless, with only a 47% probability of 

estimating the true model, and a 21% probability of estimating a model of dimension 

6. While the rule of choosing t > 2 and the PRESS variance estimate 2~  have similar 
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probabilities of choosing the right model, there is an important and interesting 

deference in overestimation probabilities. Since the null holds for models higher than 

the true dimension, the probability of rejecting the null in each of the higher 

dimensions is about the same, around 4.6%. However, use of 2~  leads to a rule which 

appears to be consistent – the probability appears to decline to zero for dimension 6, 

and is headed that way for dimension 5. Since it appears clearly desirable to use a 

consistent rule, the Monte Carlo study leads us to prefer 2~  to the t > 2 rule. 

 

Still, the performance of the PRESS variance estimate is not satisfactory from an absolute 

point-of-view. Achieving only 89% probabilities of selecting the correct model in large 

samples, where this probability should be close to 100%, is not quite satisfactory. Since the 

underestimation probabilities converge to zero, we conclude that lack of consistency of 

PRESS is cause by overestimation – the probability of selecting a model of dimension larger 

than the true model is too large. To reduce this problem, we penalized the choice of higher 

dimensional models more heavily than is done by PRESS. As penalized factors, we used the 

ones involved in the functions of model selection criteria AIC, SC, HQC and AICC. The 

results obtained from modifying the four model selection criteria showed that for all four 

criteria, the probability of selecting the correct dimension improved in large samples.  

 

It is well-known that the AIC is inconsistent. Replacing 2̂  by 2~  changes the AIC into a 

consistent criterion. Large sample gains from the substitution are around 10%, and the 

probability of selecting the correct model appears convergent to unity. The Schwartz (SC) and 

Hannan Quinn (HQC) Criteria are consistent. The improvement over these are only 1% and 

3%, respectively. For the case of AICC probability of selecting the correct model almost 

double. This is mainly because the AICC appears to be quite poor compared to the other 

criteria. 

 

As a result, we can say that it is quite surprising that simply replacing 2̂  by the 

asymptotically equivalent PRESS variance estimate improves all the model selection criteria, 

sometimes substantially. 
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