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ABSTRACT 

 
Two model averaging approaches are used and compared in estimating and forecasting 

dynamic factor models, the well-known Bayesian model averaging (BMA) and the 

recently developed weighted average least squares (WALS). Both methods propose to 

combine frequentist estimators using Bayesian weights. We apply our framework to the 

Armenian economy using quarterly data from 2000–2010, and we estimate and forecast 

real GDP growth and inflation. 
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1. INTRODUCTION 

 

In the recent macroeconomic literature, factor-based dynamic models have become popular. 

The idea underlying these models is that, while there are potentially a very large number of 

explanatory variables, most of the movement in the dependent variable can be explained by 

only a few variables or linear combinations thereof. One of the reasons why this happens is 

that the explanatory variables are often highly correlated. 

 

We mention three recent examples where this approach has been successfully applied. Stock 

and Watson (2002) performed forecasting experiments for USA macroeconomic variables 

using 215 explanatory variables. From this large number of variables they extracted a few 

factors to forecast key macroeconomic indicators. Forni et al. (2000, 2003) provided a time-

series forecasting method based on spectral analysis, and applied this method to forecast 

Euro-area industrial production and inflation using 447 explanatory variables. Finally, 

Bernanke et al. (2005) took a vector autoregressive (VAR) model and augmented it with 

factors based on 120 macroeconomic variables. All these papers find that the mean squared 

errors of estimates and forecasts based on factor models are lower than those obtained from 

vector autoregressive models. 

 

After extracting factors, these models are typically estimated in the traditional econometric 

way, that is, separating model selection and estimation. Recent advances in econometric 

theory allow us to combine model selection and estimation into one procedure, thus avoiding 

the undesirable problem of pretesting. This procedure is called ‘Bayesian model averaging’. 

The purpose of the current paper is to apply the basic (non-dynamic) model averaging 
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framework to dynamics and factor extraction, and to use this dynamic framework to explain 

and forecast Armenian real GDP growth and inflation.  

 

In addition, we wish to compare in this context the standard Bayesian model averaging 

(BMA) approach to the ‘weighted average least squares’ (WALS) approach, recently 

developed in Magnus et al. (2010). The WALS approach has both theoretical and 

computational advantages over BMA. Theoretical, because it generates bounded risk and 

contains an explicit treatment of ignorance; computational, because its computing time 

increases linearly rather than exponentially with the dimension of the model selection space. 

In Magnus et al. (2010), WALS was applied to growth empirics, but without dynamics or 

lagged dependent variables. 

 

Estimation and forecasting in factor-based dynamic models using the BMA algorithm was 

first applied by Koop and Potter (2004) to US data. Our current paper follows their general 

approach, but also reports on experiments where the two model averaging methods (WALS 

and BMA) are compared. 

 

The paper is organized as follows. The factor-based dynamic model is introduced in Section 

2. In Section 3 we present the WALS and BMA model averaging methods. Some 

characteristics of Armenia are provided in Section 4, and the data are described in Section 5, 

which also contains a preliminary analysis of the data. The estimation results are given in 

Section 6. We report on two experiments. First, an estimation simulation in Section 7, then a 

forecast experiment in Section 8. Section 9 concludes. 

 

2. THE DYNAMIC FACTOR MODEL 

  

We consider the dynamic regression model 

 yt = α(L)yt–1 + β(L)xt–1 + ξt  (t = 1,…, T) (2.1) 

where yt is a scalar dependent variable, xt is a k×1 vector of nonrandom explanatory variables, 

α(L) and β(L) are polynomials in the lag operator of dimensions p1 and p2 , respectively, and ξt 

is a random vector of unobservable disturbances, independently and identically distributed as 

N(0, σ
2
 ). 

 

We have p1 + kp2 explanatory variables, which may be a large number. Moreover, many of 

the parameters may be close to zero. These two factors make it difficult to apply standard 

estimation methods (Koop and Potter, 2004). It is then common in the macro-econometric 

literature to replace the k explanatory variables with a much smaller number of variables. This 

can be achieved by using principal component or factor analysis algorithms. Then, after 

extracting the principal components, Model (2.1) can be rewritten as 

 yt = α(L)yt–1 + γ(L)ft–1 + εt  (t = 1,…, T) (2.2) 

where ft (m×1) is the vector of extracted principal components and γ(L) is a polynomial in the 

lag operator (Stock and Watson, 2002). We assume that m < k and m < T. Of course, as noted 

by Koop and Potter (2004, p. 553), there is a cost in this type of transformation, namely that 

the interpretation of the variables is more difficult. 

 

Koop and Potter (2004) were the first to show how Bayesian model averaging can be applied 

to estimation and forecasting using dynamic factor models. Their study applies BMA to the 

problem of forecasting GDP growth and inflation using quarterly US data on 162 time series. 

Our paper follows their approach, but also compares two competing estimation procedures: 
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BMA and WALS. This will not only tell us something about the power of the two algorithms, 

but will also provide information about the robustness of our results. 

 

3. BAYESIAN COMBINATIONS OF FREQUENTIST ESTIMATORS 

 

The idea behind combining estimators (or forecasts) is to use information from all models 

within a given family in a continuous fashion. In contrast to standard econometrics — where 

one first selects a model and then estimates the parameters within the chosen model, a discrete 

procedure — we combine the estimates from all models considered, where some models get a 

higher weight than others, based on priors and diagnostics. One advantage of this procedure is 

that we avoid the well-known pretest problem: our procedure is a joint procedure, where 

model selection and estimation are combined. 

 

As our framework we choose the linear regression model 

 y·=·X1β1·+·X2β2·+·ε =·Xβ·+·ε, ε ~ N(0, σ
2
In ),  

where y (n·×·1) is the vector of observations, X1 (n·×·k1) and X2 (n·×·k2) are matrices of 

nonrandom regressors, ε is a random vector of unobservable disturbances, and β1 and β2 are 

unknown parameters which we need to estimate. We assume that k1·≥·1, k2·≥·0, 

k·=·k1·+·k2·≤·n·−·1, that X = (X1 : X2) has full column-rank, and that the disturbances are 

independent and identically distributed. 

 

The reason for distinguishing between X1 and X2 is that X1 contains variables that we want to 

be in the model (whatever t-values or other diagnostics we find), while X2 contains variables 

that may or may not be in the model. The columns of X1 are called ‘focus’ regressors, the 

columns of X2 ‘auxiliary’ regressors. The uncertainty about each auxiliary regressor, that is 

whether we should or should not include the regressor in our model, is a very common 

situation, and the application of model averaging is then a natural procedure. Rather than 

choosing one model by preliminary diagnostic tests, we assume that each model tells us 

something of interest about our focus parameters. We do not, however, trust each model to the 

same degree, and the resulting weights are determined by priors and data. In this paper we 

concentrate on two model averaging algorithms, the well-known BMA algorithm and the 

recently introduced WALS algorithm. We briefly summarize each in turn. Full details and 

background references are provided in Magnus et al. (2010). The MATLAB codes can be 

obtained from www.janmagnus.nl/items/BMA.pdf, and the Stata codes are described in De 

Luca and Magnus (2011). 

 

3.1. Bayesian Model Averaging (BMA) 

 

With the exception of Magnus et al. (2010), the whole literature on Bayesian model averaging 

considers the case k1·=·1. We summarize the approach of Magnus et al. (2010, Section 2). 

Since there are k2 auxiliary regressors, we have 2
k2 different models to consider, because each 

auxiliary regressor can either be included or not. For each subset X2i of k2i·≤·k2 auxiliary 

variables we consider the regression 

 y·=·X1β1·+·X2iβ2i·+·εi ,  

which we call model Mi . If we let p(Mi) denote the prior probability that Mi is the true 

model, then the posterior probability for model Mi is given by 

 p(Mi ) p(y |Mi)  
 λi = p(Mi |y) =   (i = 1,…, 2

k2),  
∑jp(Mj ) p(y |Mj) 

http://www.janmagnus.nl/items/BMA.pdf
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and if we take p(Mi)·=·2
–k2, which is the common assumption, then p(Mi) does not depend on 

i, and we have simply λi·∝·p(y |Mi), the marginal likelihood of y in model Mi. If we adopt 

Zellner’s g-prior (Zellner, 1986), then 

 λi·∝·

2/2
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We specify gi as 
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2

2kn
gi  . 

 

The λi are the required weights to obtain the BMA estimates and precisions. 

 

For example, the BMA estimator of β1 is given by 

 E(β1|y) =


2

1

k

i

i E(β1|y,Mi). 

 

There are several problems with BMA. First, all 2
k2 models have to be evaluated implying a 

huge computational effort; second, the priors are based on the normal distribution, leading to 

unbounded risk; and third, the treatment of ‘ignorance’ is ad hoc and unsatisfactory. These 

problems are avoided in an alternative model averaging procedure, called WALS. 

 

3.2. Weighted Average Least Squares (WALS) 

 

In the WALS algorithm, developed in Magnus et al. (2010, Section 3), we first 

‘orthogonalize’ the columns of X2 such that P′X′2M1X2P = Λ, where P is orthogonal and Λ is 

diagonal. Then we define X∗
2 = X2PΛ

−1/2
 and β∗2 = Λ

1/2
P′β2 , so that X∗

2β
∗
2 = X2β2. Our prior will 

be on β1 and β∗2 (rather than on β2 ), and this gives us enormous computational advantage, 

because all models which include x∗2j as a regressor will have the same estimator of β∗2j, 

irrespective which other β∗2’s are estimated. 

 

The second ingredient is the ‘equivalence theorem’ (Magnus and Durbin, 1999; Danilov and 

Magnus, 2004), which tells us that the WALS estimator b1 of β1 will be ‘good’ (in the mean 

squared error sense) if and only if Wβ̂∗2 is a good estimator of β∗2, where β̂∗2 denotes the least 

squares estimator of β∗2 in the unrestricted model, and W is a random diagonal matrix of order 

k2·×·k2. The diagonal elements wj of W will depend on the weights λi, but while there are 2
k2 

λ’s, there are only k2 w’s. This is where the computational advantage comes from. 

 

The third ingredient is the treatment of ignorance. Based on the fact that a t-value of one 

indicates that including an auxiliary regressor gives us the same mean squared error of the 

estimated focus parameter as excluding the auxiliary regressor, we define ignorance on an 

auxiliary parameter η by the properties 
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 Pr(η·>·0)·=·Pr(η·<·0), ········Pr(|η|·>·1) =·Pr(|η|·<·1),  

and we propose the Laplace distribution 

 π(η)·= (c/2)·exp(−c|η|) 

with c·=·log 2. 

 

The WALS estimator is a Bayesian combination of frequentist estimators, and possesses 

major advantages over standard Bayesian model averaging (BMA) estimators: the WALS 

estimator has bounded risk, allows a coherent treatment of ignorance, and its computational 

effort is negligible. The sampling properties of the WALS estimator as compared to BMA 

estimators have been examined in Magnus et al. (2011), where Monte Carlo evidence shows 

that the WALS estimator performs better than standard BMA and pretest alternatives. 

Because of the light computational cost, extensions are possible in many directions. For 

example, Magnus et al. (2011) extend the WALS theory to allow for nonspherical 

disturbances. 

 

In the current paper we consider a broader class of linear models than before, by allowing the 

regressors to include lagged dependent variables. The yt will then be correlated with the 

current and all previous disturbances, but uncorrelated with all future disturbances. Hence, the 

regressor yt−1 will be uncorrelated with the current disturbance and all future disturbances, 

although it will be correlated with all previous disturbances. The standard ordinary least 

squares (OLS) assumptions do therefore not hold, and the finite-sample properties of the least 

squares estimators are not valid. However, as shown by Mann and Wald (1943), these 

properties will hold asymptotically. 

 

We need to determine which variables are focus and which are auxiliary. The focus variables 

are those which we want in the model on theoretical or other grounds, irrespective of any 

diagnostics. The choice is not always easy and often subjective. It is guided by economic-

theoretical considerations and by previous empirical experience. But it is also guided by the 

purpose of the model: if our primary purpose is to study the effect of x and z on y, then it 

would seem ill-advised to remove x or z from the model; these are necessarily focus variables. 

 

In our setting, we shall assume that the lagged dependent variables are always focus 

regressors. But the extracted principal components can be either focus or auxiliary. Thus we 

write 

 y·=·X1β1·+·X2β2·+·ε  (3.3) 

where X1 contains the lagged dependent variables and a subset (possible empty) of the 

principal components, and X2 contains the remainder of the principal components. In this 

form we can apply BMA and WALS to this system. 

 

4. CHARACTERISTICS OF ARMENIA 

 

Armenia is a small country in the Southern Caucasus, slightly larger than Wales, slightly 

smaller than Belgium, and about 65% the size of Moscow region. Most of its territory (80%) 

consists of mountains. It is bordered by Georgia to the North and East, Azerbaijan to the 

West, and Turkey and Iran to the South. Armenia was the first nation to adopt Christianity as 

a state religion, in 301 AD. The population of Armenia, close to three million people, is 

homogeneous: about 98% is ethnic Armenian with some small minorities, mostly Yazidis 

(1.3%) and Russians (0.5%). 
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Until 1991 Armenia was a republic of the former Soviet Union. During the Soviet period 

Armenia was transformed from an agricultural to an industrial society, and produced machine 

tools, electronic products, synthetic rubber, and textiles to trade with other Soviet republics in 

exchange for raw materials and energy. But the regional conflict with Azerbaijan over 

Nagorno-Karabakh and the break-up of the Soviet Union contributed to a severe economic 

decline in the early 1990s. As a result, GDP in 1992/93 was only about 40% of the level in 

1989. 

 

In 1994 the Armenian Government launched an ambitious IMF-sponsored economic program, 

which has resulted in positive growth since 1995. Today, Armenia’s economy is stable with a 

high growth rate and low inflation. From 2000–2009 the economy grew at an annual average 

rate of 8.8%, while the inflation rate was 3.0%. The reason for this rapid growth lies mainly in 

the expanding construction and service sectors; according to Armenia’s National Statistical 

Agency, the construction sector accounted for about 27% of GDP in 2008. Cash remittances 

from migrant workers (of which 95% are employed in Russia) are another important factor.  

 

Despite marked progress, Armenia still suffers from a large trade imbalance which is an 

impediment to economic growth. Armenia is largely dependent upon foreign aid and 

remittances from Armenian nationals working abroad. The total value of foreign debt is high: 

the ratio between GDP and foreign debt has reached 46%. The unemployment rate is nearly 

30%, and a huge gap exists between actual and potential GDP. 

 

5. DATA DESCRIPTION AND PRELIMINARY ANALYSIS 

 

Our data consist of quarterly time series of 42 macroeconomic variables from 2000 (second 

quarter) to 2010 (fourth quarter), in total 43 observations for each variable. This set comprises 

information on national accounts data (9 variables) and consumer prices and exchange rate 

data (13 variables), listed in Table 5.1; and on financial and monetary policy indicators (13 

variables) and international macroeconomic indicators (7 variables), listed in Table 5.2. All 

variables in Table 5.1 are in logarithmic form, in first differences. The variables in column 1 

are all real. The variables in columns 1 and 2 are seasonally adjusted. 

 
National accounts Price indices Price indices and exchange rates 

GDP Consumer price index Wheat price index 

Consumption Food price index Fuel price index 

Investment Nonfood price index Imported food price index 

Exports Services price index Imported nonfood price index 

Imports Home food price index Administrative price index 

Industrial output  AMD/USD exchange rate 

Agricultural output  AMD/EURO exchange rate 

Construction  AMD/RR exchange rate 

Services   

Table 5.1 National accounts, consumer prices and exchange rates. 

 

The variables in Table 5.2 are also in logarithmic form, in first differences, and the variables 

in columns 1 and 3 are seasonally adjusted. The international indicators in column 3 are taken 

from the International Financial Statistics (IFS) published by the IMF and are already 

seasonally adjusted. 

 

The dependent variables are either ‘growth’, denoted G, defined as the quarterly growth rate 

of real GDP, and ‘inflation’, denoted INF, defined as the quarterly growth rate of the 

consumer price index CPI. The dynamics of the observed quarterly real GDP data are 
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presented in Figures 5.1 (real GDP) and 5.2 (growth), and the dynamics of the observed 

quarterly CPI data in Figures 5.3 (CPI) and 5.4 (inflation). We see from Figures 5.1–5.2 that 

the 2008 global economic crisis led to a sharp decrease in real GDP in the 4-th quarter of 

2008. Real GDP declined by about 15% in 2009 compared to 2008, primarily because the 

remittance and private capital flow boom came to an end, leading to the collapse of the 

construction sector. Since 2010 the growth of real GDP is again positive. Figures 5.3–5.4 

show that inflation has responded less dramatically during the global crisis; it remained low at 

about 3.5% in 2009, due to weak domestic demand and low import prices. 

 
Financial policy indicators Interest rates International indicators 

Cash money AMD deposits USA real GDP 

Money aggregate, M0 USD deposits EU real GDP 

Money aggregate, M1 AMD loans USA consumer price index 

Money aggregate, M2X USD loans EU consumer price index 

Total deposits Central Bank interbank Gasoline price index 

Loans to economy  Petroleum price index 

Loans to enterprizes  Wheat price index 

Loans to households   

Table 5.2 Financial, monetary and international indicators. 

Figure 5.1 Seasonally adjusted real GDP, 2000/Q1–2010/Q4 (billion Armenian drams) 

 
 

Figure 5.2 Quarterly growth rate of real GDP, 2000/Q2–2010/Q4 
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Figure 5.3 Seasonally adjusted CPI, 2000/Q1–2010/Q4 (2000/Q1 = 100) 

 
 

Figure 5.4 Inflation (quarterly growth rate of CPI), 2000/Q2–2010/Q4 

 
 

Principal Rotated % of total Cumulative Correlation Correlation 

components eigenvalue variance % with growth with inflation 

Int_rate 5.11 12.78 12.78 0.04 -0.21 

Ex_rate 5.00 12.51 25.29 -0.03 0.28 

Invest 3.90 9.74 35.03 0.65 0.07 

Mon_agg 3.60 9.00 44.03 0.43 0.01 

Credit 3.19 7.98 52.01 0.02 0.10 

Pr_index 2.62 6.54 58.55 0.23 0.62 

ImpExp 2.58 6.46 65.01 0.22 -0.03 

Nat_acc 2.37 5.93 70.93 0.31 -0.27 

Gstar 2.01 5.01 75.95 0.29 -0.12 

Hfood_pr 1.69 4.23 80.18 0.09 0.47 

Table 5.3 Characteristics of the extracted principal components. 

 

In this paper we estimate and forecast factor-based dynamic models using principal 

components. These principal components are based on the underlying data set of 40 variables 

(excluding dependent variables, that is real GDP growth and inflation). The extracted 

principal components have been given names, based on the correlation coefficients between 

the extracted principal components and the underlying time series. Some important 

characteristics of the extracted principal components are presented in the Table 5.3. The first 
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principal component is Int_rate and its contribution to the total variance of the underlying 

variables is 12.78%. The second principal component is Ex_rate with a contribution of 

12.51%, and the third is Invest with a contribution of 9.74%. The ten most important principal 

components (those with a rotated eigenvalue larger than 1) explain more than 80% of the 

variance of the underlying variables, which we consider to be sufficient. 
 

 Growth G  Inflation INF 

Regressor Model 1.1 Model 1.2 Regressor Model 2.1 Model 2.2 

Intercept focus focus Intercept focus focus 

Gt-j focus focus INFt-j focus focus 

Investt-j auxiliary focus Ex_ratet-j auxiliary focus 

ImpExpt-j auxiliary focus Pr_indext-j auxiliary focus 

Nat_acct-j auxiliary focus Hfood_prt-j auxiliary focus 

Mon_aggt-j auxiliary auxiliary Int_ratet-j auxiliary auxiliary 

Pr_indext-j auxiliary auxiliary Creditt-j auxiliary auxiliary 

Gstart-j auxiliary auxiliary Nat_acct-j auxiliary auxiliary 

   Gstart-j auxiliary auxiliary 

Table 5.4 Focus and auxiliary variables (j = 1,…, 4). 

 

Each of the extracted principal components could be used for estimation in our factor-based 

dynamic models. However, we use our knowledge of economic theory and Armenian practice 

to include only those principal components which contain important information about real 

GDP growth and inflation. Regarding real GDP growth, the highest correlations are obtained 

by Invest, Mon_agg, Pr_index, ImpExp, Nat_acc and Gstar. Regarding inflation, the highest 

correlations are obtained by Int_rate, Ex_rate, Credit, Pr_index, Nat_acc, Gstar and 

Hfood_pr. 

 

These choices then lead to the four models in Table 5.4. Model 1 refers to GDP growth and 

Model 2 to inflation. Each model has two variants. In variant 1 (Models 1.1 and 2.1) we take 

as our focus variables only the lagged values of the dependent variable (and the intercept), 

while all other variables are auxiliary, that is, we are uncertain whether they should be in the 

model or not. This is the same type of specification as in Koop and Potter (2004). In variant 2 

(Models 1.2 and 2.2) we have more focus variables. Here we argue that some of the extracted 

principal components must always be in the model so that they should be treated as focus 

variables. For Model 1.2 this applies to Invest, ImpExp, and Nat_acc, because the level of real 

GDP growth depends directly on the level of these components. For Model 2.2 it applies to 

Ex_rate, Pr_index and Hfood_pr, because these principal components are known to have a 

direct impact on the rate of inflation. Having thus specified the four models, we now turn to 

their estimation and forecasting using the WALS and BMA algorithms. 

 

6. ESTIMATION RESULTS 

 

We have two models, one for GDP growth and one for inflation. Each model has two 

variants, one with only the intercept and the lagged dependent variable as focus regressors, 

the other with additional focus regressors. For each of the four cases we consider one lag, two 

lags, three lags, or four lags. We do not use more than four lags, because, in practice, factor-

based dynamic models (DFM) are mainly used for short-term forecasting, while for long-term 

forecasts practitioners typically use dynamic stochastic general equilibrium (DSGE) models. 

This is also true at the Central bank of Armenia: for short-term forecasts (up to four quarters) 

DFM and Bayesian VAR models are used, while DSGE models are used for long-term 

forecasts (two or more years). Since we work with quarterly data, four lags means one year, 

so that the lagged period (four quarters) equals the maximum predicted period. Of course, 
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there is also considerable local experience with short-term forecasting, indicating that four 

lags provide a reasonable lag structure. 

 
 One lag Two lags Three lags Four lags 

Focus regressors    

Intercept 0.43 (0.52) 1.05 (0.78) 2.51 (1.43) 1.02 (1.90) 

Gt-1 0.77 (0.24) 0.97 (0.31) 0.92 (0.45) 0.78 (0.57) 

Gt-2 — -0.52 (0.25) -1.11 (0.41) -1.05 (0.61) 

Gt-3 — — -0.13 (0.29) 0.51 (0.72) 

Gt-4 — — — 0.20 (0.48) 

Auxiliary regressors    

Investt-1 -0.25 (0.41) -0.49 (0.47) -0.49 (0.61) -0.35 (0.73) 

ImpExpt-1 -0.14 (0.25) -0.08 (0.23) -0.01 (0.26) 0.12 (0.37) 

Nat_acct-1 0.37 (0.27) 0.19 (0.29) 0.37 (0.36) 0.67 (0.62) 

Mon_aggt-1 0.14 (0.31) 0.29 (0.32) 0.19 (0.39) 0.48 (0.54) 

Pr_indext-1 0.10 (0.23) 0.17 (0.29) 0.08 (0.36) 0.19 (0.37) 

Gstart-1 -0.22 (0.27) 0.03 (0.32) -0.29 (0.38) 0.00 (0.63) 

Investt-2 — 0.18 (0.45) 0.99 (0.69) 0.43 (0.69) 

ImpExpt-2 — 0.24 (0.23) 0.35 (0.26) 0.26 (0.44) 

Nat_acct-2 — 0.68 (0.28) 0.92 (0.34) 0.79 (0.52) 

Mon_aggt-2 — 0.26 (0.31) 0.72 (0.42) 0.87 (0.88) 

Pr_indext-2 — -0.05 (0.28) 0.71 (0.39) 0.27 (0.38) 

Gstart-2 — -0.01 (0.26) 0.80 (0.40) 0.89 (0.59) 

Investt-3 — — 0.57 (0.46) -0.79 (1.36) 

ImpExpt-3 — — 0.41 (0.24) 0.29 (0.38) 

Nat_acct-3 — — 0.47 (0.34) 0.09 (0.52) 

Mon_aggt-3 — — 0.65 (0.38) 0.35 (0.59) 

Pr_indext-3 — — -0.22 (0.29) -0.61 (0.56) 

Gstart-3 — — -0.22 (0.29) -0.76 (0.91) 

Investt-4 — — — -0.75(0.78) 

ImpExpt-4 — — — -0.07 (0.26) 

Nat_acct-4 — — — 0.11 (0.61) 

Mon_aggt-4 — — — -0.67 (0.42) 

Pr_indext-4 — — — -0.14 (0.63) 

Gstart-4 — — — -0.11 (0.51) 

Table 6.5 WALS estimates for Model 1 (Growth), Version 1. 

 

In addition, we have two different model averaging algorithms: WALS and BMA. All WALS 

and BMA results are obtained using MATLAB codes, which are freely available from 

www.janmagnus.nl/items/BMA.pdf. The WALS estimates for the GDP growth equation are 

presented in Tables 6.5 and 6.6. 

 

In Table 6.5 the focus variables are the intercept and lagged values of real GDP growth, while 

in Table 6.6 we add lagged values of Invest, ImpExp and Nat_acc to the focus variables. The 

first lag Gt−1 of real GDP growth is positively correlated with current GDP growth Gt and the 

parameter appears to be close to one in both models, and in each of the four lag structures, 

showing a certain amount of robustness. Current GDP growth is negatively correlated with 

lagged values of Invest, and positively correlated with Nat_acc. This is to be expected, since 

one of the main ingredients of Nat_acc is final consumption, which in turn is one of the basic 

components of GDP. Thus, final consumption should be positively correlated with GDP. 

Also, current consumption is positively correlated with consumption in the previous period, 

and hence consumption of the previous period and GDP of the current period should be 

positively correlated. The Mon_agg component is also positively correlated with current real 

GDP growth, which tells us that monetary aggregates can be considered as potential leading 

indicators for changes in the dynamics of real GDP.  

http://www.janmagnus.nl/items/BMA.pdf
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 One lag Two lags Three lags Four lags 

Focus regressors    

Intercept 0.37 (0.54) 0.98 (0.83) 2.56 (1.40) 1.18 (1.94) 

Gt-1 0.80 (0.25) 1.08 (0.33) 1.08 (0.45) 0.85 (0.58) 

Investt-1 -0.40 (0.46) -0.85 (0.52) -0.89 (0.61) -0.62 (0.76) 

ImpExpt-1 -0.21 (0.28) -0.12 (0.25) -0.02 (0.27) 0.06 (0.41) 

Nat_acct-1 0.54 (0.30) 0.18 (0.32) 0.28 (0.37) 0.58 (0.64) 

Gt-2 — -0.60 (0.26) -1.29 (0.43) -1.15 (0.64) 

Investt-2 — 0.20 (0.48) 1.17 (0.71) 0.45 (0.74) 

ImpExpt-2 — 0.29 (0.26) 0.42 (0.28) 0.28 (0.46) 

Nat_acct-2 — 0.94 (0.31) 1.18 (0.36) 1.01 (0.54) 

Gt-3 — — -0.14 (0.30) 0.51 (0.74) 

Investt-3 — — 0.74 (0.48) -0.71 (1.38) 

ImpExpt-3 — — 0.49 (0.26) 0.31 (0.40) 

Nat_acct-3 — — 0.55 (0.37) 0.14 (0.56) 

Gt-4 — — — 0.15 (0.52) 

Investt-4 — — — -0.57 (0.83) 

ImpExpt-4 — — — 0.00 (0.29) 

Nat_acct-4 — — — 0.18 (0.65) 

Auxiliary regressors    

Mon_aggt-1 0.13 (0.31) 0.26 (0.31) 0.11 (0.38) 0.48 (0.53) 

Pr_indext-1 0.08 (0.23) 0.16 (0.27) 0.06 (0.34) 0.19 (0.37) 

Gstart-1 -0.20 (0.26) 0.04 (0.31) -0.28 (0.38) -0.06 (0.62) 

Mon aggt-2 — 0.25 (0.30) 0.72 (0.41) 0.92 (0.89) 

Pr_indext-2 — -0.03 (0.25) 0.73 (0.39) 0.28 (0.39) 

Gstart-2 — 0.01 (0.25) 0.80 (0.41) 0.93 (0.59) 

Mon_aggt-3 — — 0.63 (0.38) 0.36 (0.58) 

Pr_indext-3 — — -0.18 (0.28) -0.55 (0.56) 

Gstart-3 — — -0.20 (0.28) -0.79 (0.91) 

Mon_aggt-4 — — — -0.67 (0.44) 

Pr_indext-4 — — — -0.14 (0.65) 

Gstart-4 — — — -0.24 (0.54) 

Table 6.6 WALS estimates for Model 1 (Growth), Version 2. 
 

Concerning Invest we see that the first lag is negatively correlated with current GDP growth, 

but that higher lags are positively correlated. Apparently, investments have a short-term (one 

quarter) negative impact, but a medium-term (2–4 quarters) positive impact on economic 

activity (and therefore on the growth level). Many of the auxiliary parameters are not 

statistically significant. 

 

In Tables 6.7 and 6.8 we report the corresponding results for inflation. Lagged values of 

inflation are positively correlated with current inflation, but comparing with the growth 

estimates we find that inflation in Armenia is less backward-looking than growth. The first 

lags of Pr_index and Ex_rate are positively correlated with current inflation, which is again 

reasonable. The positive correlation between Pr_index and inflation tells us that price 

fluctuations in Armenia are autocorrelated. It appears that Ex_rate dynamics are positively 

correlated with inflation, due to the fact that Armenia is a small open economy with an 

imports-to-GDP ratio of about 40%. The home price index therefore depends strongly on the 

international price index level. 

 

Finally, let us compare Table 6.5 with Table 6.6 and Table 6.7 with Table 6.8. The difference 

between the tables is that there are fewer focus variables in Table 6.5 (version 1) than in Table 

6.6 (version 2), and similarly, fewer focus variables in Table 6.7 than in Table 6.8. A 

comparison between the results tells us that the estimates are generally of the same sign and 
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size. Concerning the standard errors two remarkable findings emerge. First, the standard error 

of a parameter is generally higher when the parameter is a focus parameter than when it is 

treated as an auxiliary parameter. For example, the parameter corresponding to Investt−1 in the 

one-lag model has standard error 0.41 in version 1, and 0.46 in version 2. Second, when there 

are more focus variables, the standard errors of the parameters corresponding to auxiliary 

variables (such as Gstart−1) become (slightly) smaller. These findings appear to be quite 

general and robust. The second result is quite intuitive: more things are fixed (more focus 

variables) and hence the standard errors become smaller. But the first result is puzzling and 

potentially important: if we treat a variable as auxiliary while it should be treated as focus, 

then we obtain standard errors that are misleadingly small, leading to too much confidence in 

our results. 

 
 One lag Two lags Three lags Four lags 

Focus regressors    

Intercept 0.87 (0.33) 0.16 (0.59) 0.32 (0.88) -0.54 (1.88) 

INFt-1 0.27 (0.27) 0.66 (0.37) 0.35 (0.69) 0.69 (1.41) 

INFt-2 — 0.20 (0.30) 0.38 (0.58) 0.72 (1.16) 

INFt-3 — — -0.01 (0.44) -0.56 (0.82) 

INFt-4 — — — 0.62 (0.74) 

Auxiliary regressors    

Ex_ratet-1 0.13 (0.13) -0.02 (0.18) 0.07 (0.26) -0.07 (0.42) 

Pr_indext-1 0.31 (0.21) 0.14 (0.25) 0.33 (0.43) 0.27 (0.81) 

Hfood_prt-1 0.01 (0.19) -0.29 (0.26) -0.14 (0.40) -0.47 (0.83) 

Int_ratet-1 -0.06 (0.12) 0.28 (0.45) 0.20 (0.70) 0.60 (0.93) 

Creditt-1 0.09 (0.11) -0.24 (0.22) -0.19 (0.38) -0.02 (0.53) 

Nat_acct-1 -0.03 (0.13) 0.11 (0.19) 0.07 (0.27) 0.12 (0.37) 

Gstart-1 -0.17 (0.12) 0.03 (0.19) 0.04 (0.34) 0.21 (0.55) 

Ex_ratet-2 — -0.01 (0.16) -0.06 (0.30) 0.08 (0.50) 

Pr_indext-2 — -0.24 (0.26) -0.20 (0.34) -0.52 (0.62) 

Hfood_prt-2 — -0.15 (0.22) -0.26 (0.44) -0.57 (0.83) 

Int_ratet-2 — -0.31 (0.43) 0.09 (0.76) -0.59 (1.35) 

Creditt-2 — 0.28 (0.20) 0.00 (0.46) 0.11 (0.93) 

Nat_acct-2 — 0.11 (0.15) 0.22 (0.27) 0.44 (0.49) 

Gstart-2 — -0.10 (0.15) 0.07 (0.29) 0.17 (0.64) 

Ex_ratet-3 — — 0.11 (0.28) 0.19 (0.48) 

Pr_indext-3 — — -0.15 (0.39) 0.02 (0.52) 

Hfood_prt-3 — — -0.14 (0.31) 0.28 (0.58) 

Int_ratet-3 — — -0.39 (0.69) -0.72 (0.99) 

Creditt-3 — — 0.20 (0.31) 0.14 (0.73) 

Nat_acct-3 — — -0.07 (0.22) -0.09 (0.39) 

Gstart-3 — — -0.13 (0.20) -0.19 (0.48) 

Ex_ratet-4 — — — -0.03 (0.42) 

Pr_indext-4 — — — -0.24 (0.57) 

Hfood_prt-4 — — — -0.32 (0.42) 

Int_ratet-4 — — — 0.89 (1.20) 

Creditt-4 — — — 0.05 (0.47) 

Nat_acct-4 — — — 0.04 (0.30) 

Gstart-4 — — — -0.15 (0.33) 

Table 6.7 WALS estimates for Model 2 (Inflation), Version 1. 
 

7. AN ESTIMATION SIMULATION EXPERIMENT 

 

While the previous results are of practical and theoretical interest, a proper comparison 

between WALS and BMA can only be done through a simulation experiment, where we 

know the data-generating process (DGP) and can therefore relate the estimates to the truth. 

The DGP that we have chosen follows closely the models estimated in the previous section. 
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We conduct the simulation experiments for one, two, and three lags, so that we gain insight 

on the performance of the WALS and BMA algorithms for various lag lengths. In Tables 7.9 

and 7.10 we present the parameter values in the data-generating processes for the growth and 

inflation models, respectively. 

 
 One lag Two lags Three lags Four lags 

Focus regressors    

Intercept 0.93 (0.34) 0.06 (0.62) 0.09 (0.91) -0.73 (1.86) 

INFt-1 0.22 (0.28) 0.66 (0.40) 0.29 (0.72) 0.48 (1.46) 

Ex_ratet-1 0.17 (0.15) 0.00 (0.21) 0.10 (0.30) -0.05 (0.45) 

Pr_indext-1 0.42 (0.23) 0.24 (0.29) 0.43 (0.47) 0.46 (0.85) 

Hfood_prt-1 -0.04 (0.21) -0.38 (0.29) -0.21 (0.43) -0.46 (0.86) 

INFt-2 — 0.28 (0.31) 0.48 (0.62) 0.88 (1.20) 

Ex_ratet-2 — -0.03 (0.19) -0.14 (0.33) 0.06 (0.53) 

Pr_indext-2 — -0.35 (0.29) -0.25 (0.38) -0.57 (0.66) 

Hfood_prt-2 — -0.20 (0.26) -0.28 (0.48) -0.68 (0.86) 

INFt-3 — — 0.14 (0.47) -0.50 (0.86) 

Ex_ratet-3 — — 0.13 (0.30) 0.19 (0.51) 

Pr_indext-3 — — -0.31 (0.43) -0.04 (0.57) 

Hfood_prt-3 — — -0.29 (0.35) 0.21 (0.62) 

INFt-4 — — — 0.77 (0.76) 

Ex_ratet-4 — — — 0.01 (0.44) 

Pr_indext-4 — — — -0.41 (0.61) 

Hfood_prt-4 — — — -0.48 (0.47) 

Auxiliary regressors    

Int_ratet-1 -0.06 (0.12) 0.28 (0.45) 0.20 (0.70) 0.59 (0.92) 

Creditt-1 0.08 (0.11) -0.24 (0.22) -0.19 (0.38) -0.01 (0.53) 

Nat_acct-1 -0.04 (0.13) 0.11 (0.19) 0.07 (0.27) 0.12 (0.36) 

Gstart-1 -0.16 (0.11) 0.04 (0.19) 0.05 (0.34) 0.21 (0.55) 

Int_ratet-2 — -0.30 (0.43) 0.10 (0.75) -0.57 (1.35) 

Creditt-2 — 0.28 (0.20) 0.00 (0.46) 0.10 (0.94) 

Nat_acct-2 — 0.11 (0.15) 0.21 (0.27) 0.44 (0.49) 

Gstart-2 — -0.09 (0.15) 0.07 (0.29) 0.17 (0.64) 

Int_ratet-3 — — -0.39 (0.69) -0.74 (0.99) 

Creditt-3 — — 0.20 (0.31) 0.14 (0.75) 

Nat_acct-3 — — -0.06 (0.22) -0.10 (0.39) 

Gstart-3 — — -0.13 (0.20) -0.19 (0.49) 

Int_ratet-4 — — — 0.89 (1.20) 

Creditt-4 — — — 0.06 (0.47) 

Nat_acct-4 — — — 0.03 (0.30) 

Gstart-4 — — — -0.15 (0.33) 

Table 6.8 WALS estimates for Model 2 (Inflation), Version 2. 
 

We randomly draw the {ut} from a standard-normal distribution. Then, given the data-

generating process and the values of the regressors, we generate the time series for real GDP 

growth or inflation, the dependent variables. Now that we have all the data, we estimate the 

parameters using the models and the estimation algorithms of Section 6. This gives us 

parameter estimates. Next we draw new errors {ut}, obtain new values for the dependent 

variable, and hence new parameter estimates. We repeat this 1000 times, and compute the 

simulation root mean squared errors (RMSE): 
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where βk
true

 denotes the true value of βk; βk
walsl and βk

bmal are the corresponding WALS and BMA 

estimates, respectively, for the l-th iteration. 

 
 One lag Two lags Three lags 

Intercept 0.50 1.20 3.00 

Gt-1 0.75 0.95 0.80 

Investt-1 -0.30 -0.70 -0.40 

ImpExpt-1 -0.15 0.00 0.10 

Nat_acct-1 0.60 0.15 0.55 

Mon_aggt-1 0.30 0.40 0.40 

Pr_indext-1 0.20 0.35 0.30 

Gstart-1 -0.35 0.10 -0.30 

Gt-2 — -0.60 -1.30 

Investt-2 — 0.30 1.30 

ImpExpt-2 — 0.30 0.40 

Nat_acct-2 — 0.95 1.15 

Mon_aggt-2 — 0.40 0.70 

Pr_indext-2 — -0.25 0.90 

Gstart-2 — 0.05 0.90 

Gt-3 — — -0.10 

Investt-3 — — 0.75 

ImpExpt-3 — — 0.45 

Nat_acct-3 — — 0.60 

Mon_aggt-3 — — 0.90 

Pr_indext-3 — — -0.30 

Gstart-3 — — -0.30 

 
2 2.25 2.25 2.25 

Table 7.9 Data-generation process for Model 1 (Growth), Version 2. 
 

 One lag Two lags Three lags 

Intercept 1.00 0.10 -2.00 

INFt-1 0.10 0.80 1.40 

Ex_ratet-1 0.20 0.60 -0.10 

Pr_indext-1 0.55 -0.15 -0.15 

Hfood_prt-1 0.10 -0.15 -0.85 

Int_ratet-1 -0.20 0.00 0.50 

Creditt-1 0.10 -0.55 -0.50 

Nat_acct-1 -0.10 -0.70 0.70 

Gstart-1 -0.30 -0.40 0.40 

INFt-2 — 0.50 1.00 

Ex_ratet-2 — -0.50 -0.15 

Pr_indext-2 — -0.50 -0.75 

Hfood_prt-2 — 0.40 -0.50 

Int_ratet-2 — 0.50 0.60 

Creditt-2 — 0.40 0.60 

Nat_acct-2 — 0.40 0.80 

Gstart-2 — 0.40 0.40 

INFt-3 — — 0.30 

Ex_ratet-3 — — 0.25 

Pr_indext-3 — — -0.65 

Hfood_prt-3 — — -0.20 

Int_ratet-3 — — -0.50 

Creditt-3 — — 0.60 

Nat_acct-3 — — -0.50 

Gstart-3 — — 0.50 

 
2
 1.44 1.44 1.44 

Table 7.10 Data-generation process for Model 2 (Inflation), Version 2. 
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  WALS BMA WALS BMA WALS BMA 

Intercept 0.0373 0.0375 0.0293 0.0270 0.0330 0.0399 

Gt-1 0.0192 0.0193 0.0292 0.0283 0.0247 0.0222 

Investt-1 0.0340 0.0341 0.0366 0.0362 0.0212 0.0216 

ImpExpt-1 0.0129 0.0130 0.0116 0.0118 0.0101 0.0099 

Nat_acct-1 0.0172 0.0173 0.0190 0.0199 0.0132 0.0122 

Mon_aggt-1 0.0164 0.0206 0.0142 0.0151 0.0134 0.0180 

Pr_indext-1 0.0099 0.0110 0.0100 0.0124 0.0104 0.0119 

Gstart-1 0.0154 0.0126 0.0132 0.0064 0.0202 0.0148 

Gt-2 — — 0.0163 0.0170 0.0380 0.0395 

Investt-2 — — 0.0146 0.0141 0.0480 0.0516 

ImpExpt-2 — — 0.0092 0.0099 0.0113 0.0119 

Nat_acct-2 — — 0.0105 0.0109 0.0161 0.0171 

Mon-aggt-2 — — 0.0082 0.0098 0.0150 0.0194 

Pr-indext-2 — — 0.0097 0.0088 0.0259 0.0259 

Gstart-2 — — 0.0124 0.0065 0.0254 0.0288 

Gt-3 — — — — 0.0056 0.0053 

Investt-3 — — — — 0.0263 0.0244 

ImpExpt-3 — — — — 0.0124 0.0134 

Nat_acct-3 — — — — 0.0138 0.0140 

Mon_aggt-3 — — — — 0.0161 0.0202 

Pr_indext-3 — — — — 0.0104 0.0087 

Gstart-3 — — — — 0.0109 0.0088 

Table 7.11 RMSE for estimation simulations, Model 1 (Growth), Version 2. 
 

 WALS BMA WALS BMA WALS BMA 

Intercept 0.0095 0.0089 0.0529 0.0538 0.0882 0.0910 

INFt-1 0.0067 0.0062 0.0261 0.0257 0.0409 0.0416 

Ex_ratet-1 0.0061 0.0061 0.0126 0.0124 0.0174 0.0180 

Pr_indext-1 0.0065 0.0065 0.0161 0.0163 0.0269 0.0252 

Hfood_prt-1 0.0067 0.0067 0.0200 0.0216 0.0341 0.0354 

Int_ratet-1 0.0052 0.0057 0.0197 0.0184 0.0455 0.0253 

Creditt-1 0.0047 0.0038 0.0138 0.0163 0.0210 0.0202 

Nat_acct-1 0.0046 0.0038 0.0117 0.0138 0.0198 0.0209 

Gstart-1 0.0052 0.0070 0.0101 0.0127 0.0171 0.0123 

INFt-2 — — 0.0195 0.0204 0.0341 0.0351 

Ex_ratet-2 — — 0.0093 0.0073 0.0127 0.0107 

Pr_indext-2 — — 0.0189 0.0187 0.0297 0.0318 

Hfood_prt-2 — — 0.0127 0.0120 0.0210 0.0215 

Int_ratet-2 — — 0.0169 0.0135 0.0318 0.0252 

Creditt-2 — — 0.0115 0.0127 0.0164 0.0132 

Nat_acct-2 — — 0.0089 0.0092 0.0185 0.0224 

Gstart-2 — — 0.0064 0.0092 0.0120 0.0108 

INFt-3 — — — — 0.0111 0.0105 

Ex_ratet-3 — — — — 0.0117 0.0084 

Pr_indext-3 — — — — 0.0134 0.0108 

Hfood_prt-3 — — — — 0.0115 0.0115 

Int_ratet-3 — — — — 0.0289 0.0176 

Creditt-3 — — — — 0.0161 0.0161 

Nat_acct-3 — — — — 0.0084 0.0124 

Gstart-3 — — — — 0.0097 0.0106 

Table 7.12 RMSE for estimation simulations, Model 2 (Inflation), Version 2. 
 

The results of the Monte-Carlo simulations are presented in Tables 7.11 (for growth) and 7.12 

(for inflation). The main purpose of these simulations is to compare BMA and WALS. WALS 

has certain theoretical and computational advantages, but does it in fact perform better than 

BMA? The simulations suggest that this might be the case, although the difference is small. In 

the growth simulations, WALS achieves a lower RMSE than BMA for 88% (one lag), 53% 
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(two lags), and 61% (three lags) of the parameters, thus outperforming BMA. In the inflation 

simulations, the percentages are somewhat lower: 39% (one lag), 59% (two lags), and 48% 

(three lags). Hence, a slight advantage for WALS over BMA. 

 

The above estimation simulations were based on the assumption that the data-generation 

process and the model coincide. For example, if the DGP has one lag, then we use a model 

with one lag. This, of course, is not realistic, since in practice we don’t know the DGP and 

therefore the chance that our chosen model happens to be the DGP is negligible. We now 

consider one case where the model is underspecified. More specifically, the DGP has three 

lags, but the model has only one lag. We estimate the parameters in the one-lag model and 

compare with the corresponding (true) parameters in the three-lag DGP. The results are 

presented in Table 7.13. Here, also, WALS appears to be at an advantage. For 88% (growth) 

and 61% (inflation) of the parameters, WALS achieves a lower RMSE than BMA. 

 
 Growth   Inflation  

 WALS BMA  WALS BMA 

Intercept 0.0297 0.0302 Intercept 0.0520 0.0513 

Gt-1 0.0201 0.0202 INFt-1 0.0442 0.0437 

Investt-1 0.0356 0.0357 Ex_ratet-1 0.0154 0.0153 

ImpExpt-1 0.0131 0.0132 Pr_indext-1 0.0297 0.0297 

Nat_acct-1 0.0181 0.0182 Hfood_prt-1 0.0263 0.0264 

Mon_aggt-1 0.0175 0.0223 Int_ratet-1 0.0107 0.0127 

Pr_indext-1 0.0103 0.0121 Creditt-1 0.0101 0.0123 

Gstart-1 0.0162 0.0121 Nat_acct-1 0.0167 0.0188 

   Gstart-1 0.0107 0.0115 

Table 7.13 RMSE for estimation simulations in the case of misspecification, Models 1 and 2, Version 2. 
 

8. A FORECAST EXPERIMENT 

 

We conduct a second experiment, this time in forecasting rather than estimation. Suppose we 

use T1·<·T·=·42 quarters on which we base our estimates. This leaves us T2·=·T·−·T1·>·0 

quarters for forecast experiments. The h-period forecast is given by 

 11 111
)(ˆ)(ˆˆ

  hThThT fLyLy   (h = 1,…,T2), 

where y denotes either GDP growth or inflation. In a practical situation we would not know 

fT1+h−1 and yT1+h−1, when h ≥ 2. So we would have to forecast these as well. In the experiment 

we use the observed values of fT1+h−1 and yT1+h−1, hence not the forecasted value ŷT1+h−1 when 

h·≥·2. Then we compute 
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which depends on the estimation period T1, the model, and the method (BMA or WALS). The 

results are presented in Tables 8.14 and 8.15. 

 

In this case we have calculated the RMSE not only for BMA and WALS, but also for two 

traditional methods of estimation: general-to-specific (GtS) model selection followed by 

estimation of the selected model, and ordinary least squares (OLS) of the unrestricted model. 

Including these standard forecasting methods allows us to compare model averaging with 

more traditional methods. 

 

For all cases, the smaller is the estimation period T1, the less accurate are the estimates and 

the forecasts, that is, the RMSE increases as T1 decreases. This is to be expected and it 

happens most of the time, but not always. In particular the behavior for T1 = 35 is different. 
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The explanation lies in the global financial crisis, which affected Armenia heavily. From the 

third quarter of 2008 (quarter 34 in our data set) to the second quarter of 2009 (quarter 37) 

Armenia’s GDP decreased by 18%. The largest decrease (around 9.0%) in real GDP took 

place in the fourth quarter of 2008 (quarter 35). Such a large decrease in real GDP causes a 

large deviation of real GDP from its long-term trend, and this explains (in part) why the 

RMSE values calculated for T1 = 35 are relatively large, and for T1 = 36 somewhat smaller. 

 
   T1 

Number of lags Version Method 38 37 36 35 34 

One lag 1 WALS 0.8557 0.9967 2.5503 6.1158 3.6533 

  BMA 0.8338 0.9726 2.4993 6.3675 3.5549 

  GtS 0.9606 1.1124 2.6739 6.0492 3.4711 

  OLS 0.9847 1.0726 3.2020 5.6782 3.6570 

 2 WALS 0.8597 1.0181 2.8576 5.8070 3.6330 

  BMA 0.9416 1.1265 2.5818 5.9392 3.6009 

  GtS 1.1311 1.2979 2.3720 6.0667 3.5998 

  OLS 0.9847 1.0726 3.2020 5.6782 3.6570 

Two lags 1 WALS 2.2203 2.8415 3.6176 2.7037 2.6341 

  BMA 1.8333 2.3204 3.2558 2.4816 1.7849 

  GtS 2.0147 2.9072 3.1916 2.4471 1.5800 

  OLS 2.6610 3.3104 3.5279 3.2889 3.2062 

 2 WALS 2.2162 2.8118 3.5271 3.1048 2.7043 

  BMA 2.2155 2.6711 3.6429 3.0343 2.5689 

  GtS 2.9367 3.4904 3.7139 3.1051 2.8986 

  OLS 2.6610 3.3104 3.5279 3.2889 3.2062 

Three lags 1 WALS 2.3276 2.5872 4.3087 4.5578 2.8051 

  BMA 2.1199 1.9616 3.2988 3.8783 3.0844 

  GtS 2.0535 2.5983 4.1221 4.5073 3.5460 

  OLS 2.5757 3.1871 4.4612 4.9230 3.1832 

 2 WALS 2.2043 2.7098 4.1208 4.6082 3.2474 

  BMA 2.1169 2.8038 4.2715 4.6699 3.6258 

  GtS 2.8060 1.5199 3.8202 4.4603 4.3567 

  OLS 2.5757 3.1871 4.4612 4.9230 3.1832 

Table 8.14 RMSE for ex-post forecast accuracy, Model 1 (Growth). 
 

Two main conclusions emerge from Tables 8.14 and 8.15. First, we see that the model 

averaging techniques WALS and BMA outperform the more traditional methods GtS and 

OLS. But the choice between WALS and BMA is still ambiguous. While in the estimation 

simulations we found that WALS performs better than BMA, we find in the forecasting 

simulations that BMA performs better than WALS in 2/3 of the 30 forecasts, both for growth 

and for inflation. 

 

9. CONCLUDING REMARKS 

 

We have applied two alternative model averaging algorithms (WALS and BMA) to the 

problem of estimating factor-based dynamic models in Armenia. The same models are also 

used to forecast two key macroeconomic variables, namely real GDP growth and inflation. 

The theoretical advantage of using model averaging is that it allows all models to play a role 

in the estimation and forecasting, thus avoiding the problem of pretesting. A comparison of 

the WALS to the BMA algorithm does not reveal large differences in performance. The 

WALS methodology has a stronger theoretical appeal, but — in the current context — there is 

not sufficient evidence to prefer one over the other. The simulations do show, however, that 

both model averaging methods outperform the more traditional methods (general-to-specific 

and OLS). 
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     T1   

Number of lags Version Method 38 37 36 35 34 

One lag 1 WALS 0.8542 0.7807 0.9050 0.8545 0.8993 

  BMA 0.8851 0.8810 0.9949 0.9373 0.9697 

  GtS 0.9906 1.0484 1.0819 1.0232 1.0198 

  OLS 0.9060 0.8448 0.8741 0.8788 0.8842 

 2 WALS 0.8923 0.8061 0.9000 0.8813 0.8865 

  BMA 0.9579 0.8718 0.9787 0.9291 0.9421 

  GtS 1.0024 0.9252 1.0051 0.9481 0.9559 

  OLS 0.9060 0.8448 0.8741 0.8788 0.8842 

Two lags 1 WALS 1.6452 1.6568 1.5987 1.7970 1.5262 

  BMA 1.0726 0.9829 0.8997 1.0536 0.9385 

  GtS 1.0536 0.9371 0.7445 1.0959 0.8920 

  OLS 2.0139 2.1006 2.0722 2.3070 1.8852 

 2 WALS 1.6357 1.6463 1.5935 1.7557 1.5967 

  BMA 1.1079 1.0094 1.0292 1.1293 1.3293 

  GtS 1.0076 0.9035 1.0614 1.1510 1.2761 

  OLS 2.0139 2.1006 2.0722 2.3070 1.8852 

Three lags 1 WALS 4.5016 3.8276 4.1335 3.9527 2.7138 

  BMA 1.2269 1.1040 1.0326 0.9662 1.1329 

  GtS 6.1520 1.1017 4.7159 4.7402 4.5196 

  OLS 6.1409 5.2268 5.7689 5.4534 3.5626 

 2 WALS 4.2447 3.4789 3.9977 3.8076 2.4278 

  BMA 1.3646 1.2628 1.3900 1.2499 1.9155 

  GtS 0.9806 1.0851 2.0882 1.9551 1.7758 

  OLS 6.1409 5.2268 5.7689 5.4534 3.5626 

Table 8.15 RMSE for ex-post forecast accuracy, Model 2 (Inflation). 
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