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ABSTRACT 

 
In this paper, we compare the small sample performances of Quasi Maximum Likelihood 

(QML) and Monte Carlo Likelihood (MCL) methods through Monte Carlo studies for 

several multivariate stochastic volatility models, among which we consider two new 

models that account for leverage effects. Our results confirm previous findings within the 

literature, namely, that the MCL estimator has better finite sample performance compared 

to the QML estimator. QML estimator's performance is closer to that of MCL estimator 

when the volatility processes have higher variance or when the correlations are high and/or 

time varying, but it performs relatively worse when leverage is introduced. Finally, we 

include an empirical illustration by estimating an MSV model with leverage using a 

trivariate data from the major European stock markets.  
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1. INTRODUCTION 

 

In financial time series literature, it is already established that the volatilities of asset returns 

are changing over time. Moreover, they are clustered; i.e. higher (lower) values of volatilities 

are followed by higher (lower) values, which implies that the volatilities are serially correlated. 

To capture this kind of dynamic volatility effect, the generalized autoregressive conditional 

heteroskedasticity (GARCH) models have been proposed by Engle (1982) and Bollerslev 

(1986). In GARCH models the time varying volatility is modelled as a deterministic function 

of squared previous day returns and previous day volatilities; therefore, volatilities are 

observation driven in the GARCH approach. Currently a wide range of GARCH models are 

available in the literature and are well documented in surveys: see Bollerslev et al. (1992) for 

univariate and Bauwens et al. (2006), Silvennoinen and Teräsvirta (2009) for multivariate 

models. 
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An alternative approach to modelling time varying volatility is to consider it as an unobserved 

component and let the logarithm of it follow an autoregressive process. Therefore, in this 

approach, the volatilities are parameter driven. Models of this kind are named as stochastic 

volatility (SV) models in the literature. The SV approach is attractive because of its similarity 

to the models used in financial theory to describe the behavior of prices; see Hull and White 

(1987), Taylor (1986, 1994), and also, Shephard and Andersen (2009). Moreover, it has been 

shown that SV models describe the behavior of volatilities more accurately compared to 

GARCH models (see for example Danielsson, 1994; Kim et al., 1998; and Carnero et al., 2004). 

Given the way the SV models are set up, their statistical properties are easy to derive from the 

process that the volatilities follow. However, although statistically more attractive than 

GARCH models, SV models have a disadvantage in terms of estimation, because their exact 

likelihoods are difficult to evaluate. The following survey papers are available about the 

univariate and multivariate SV (MSV) models and estimation methods: Broto and Ruiz (2004), 

Asai et al. (2006), Chib et al. (2009), Ghysels et al. (1996), Yu and Meyer (2006), Maasoumi 

and McAleer (2006), and Omori and Ishihara (2012). 

 

Several methods have been proposed for estimating SV models. A relatively easy approach is 

the quasi-maximum likelihood estimation (QML), proposed independently by Nelson (1988) 

and Harvey et al. (1994). In this approach, the logarithms of squared returns (hereforth referred 

to as log-squared returns) are modelled as a linear state space form where the transformed 

innovations are assumed to follow a Gaussian distribution, although, in fact, the true 

distribution is based on ln χ1
2
 (see Sandmann and Koopman, 1998, for the univariate and Asai 

and McAleer, 2006, for the multivariate case). Ruiz (1994) showed that the QML estimators 

are consistent and asymptotically normal. However, due to the Gaussianity assumption, QML 

approach is an estimation based on approximations and therefore, it is inefficient as noted in 

the simulation studies by several papers as Jacquier et al. (1994), Breidt and Carriquiry (1996) 

and Sandmann and Koopman (1998). Also, the transformed returns might take very large 

negative values (or even minus infinity), which is known as the inlier problem1.  

 

One way to avoid this inefficiency problem is to evaluate the exact likelihood. This requires 

high dimensional integration, which could be achieved by evaluating these integrals with 

simulation methods and then maximizing the resulting likelihood function. This class of 

simulated likelihood methods include the accelerated importance sampling (AGIS) approach 

developed in Danielsson and Richard (1993), efficient importance sampling (EIS) approach 

proposed by Liesenfeld and Richard (2003, 2006), and the Monte Carlo likelihood (MCL) 

approach proposed by  Sandmann and Koopman (1998) and Jungbacker and Koopman (2006). 

The novelty of the MCL method is that simulations are only needed for a small part of the 

likelihood function, unlike in the case of other simulated likelihood methods. Hence, it is 

computationally less intensive2. Different from the QML estimation, the MCL method of 

Sandmann and Koopman (1998) used log-squared transformation of returns taking into account 

the true distribution of the errors and therefore was modelling the log-squared returns via a 

linear non-Gaussian state space model. However, as QML method, MCL method of Sandmann 

and Koopman (1998) also has to adjust for the inlier problem. A review of these importance 

                                                 
1 See Section 2.4.1. for an explanation on how this inlier problem is treated. 
2 Durbin and Koopman (1997) showed that the loglikelihood of the state space models with non-Gaussian errors 

can be written as a sum of the loglikelihood of the approximating Gaussian model and a correction for the 

departures from the Gaussianity assumption with respect to the true model. This form of loglikelihood has the 

advantage that the simulations are only required for the departures of the loglikelihood of the true model from the 

Gaussian loglikelihood, rather than for the whole loglikelihood itself. See also Asai et al. (2006). 
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sampling methods could be found again in Asai et al. (2006)3. Below is a nonexhaustive 

comparison of these estimation methods. 

 

The MCL method considered in this paper is the one proposed by Jungbacker and Koopman 

(2006) that extended the theoretical results of Shephard and Pitt (1997), Durbin and Koopman 

(1997), and Jungbacker and Koopman (2005). In this method the returns are modelled without 

the log-squared transformation, hence there is no inlier problem. Jungbacker and Koopman 

(2006) used this approach to estimate three multivariate stochastic volatility (MSV) models: 

the stochastic time varying scaling factor model, where the variance matrix of the returns are 

scaled by the log-volatilities, the Constant Correlation MSV model of Harvey et al. (1994) and 

the Time Varying Correlation MSV model based on Cholesky decomposition. In the latter set 

up, the correlation dynamics is driven by the volatilities and a correlation parameter4.  

 
Estimation method   Pros   Cons   Empirical Examples 

QML 

H. et al. (1994)a  

R. (1994)b 

Consistent,  

asymptotically normal, 

implementation is easier 

Inefficient, inlier  

problem 

Harvey and Shephard (1996)  

Hwang and Satchell (2000)  

Yu (2002), Alizadeh et al. (2002) 

SML   

D. & R.. (1993)c  

L. & R. (2003, 2006)d 

Consistent,  

asymptotically normal, 

efficient 

Computationally  

intensive 

Danielsson (1998)  

Liesenfeld (1998, 2001)  

Liesenfeld and Jung (2000) 

MCL   

S. & K. (1998)e  

(J. & K. 2006)f 

Consistent,  

asymptotically normal, 

efficient, computationally 

less intensive than SML 

In MCL of   

S. & K. (1998)e  

inlier problem  

Asai and McAleer (2005,2006)  

Brandt and Kang (2004)  

Asai and Unite (2008) 

Table 1.1 Nonexhaustive comparison of estimation methods. 

Sources: Asai et al. (2006), a Harvey et al. (1994), b Ruiz (1994), c Danielsson and Richard (1993), d Liesenfeld  

and Richard (2003, 2006), e Sandmann and Koopman (1998), f Jungbacker and Koopman (2006). 

 

When fitting an MSV model to a financial time series, researchers are ultimately interested in 

estimating the underlying volatilities and correlations5. Therefore, when making a comparison 

of performances between different estimators, one should also consider looking at their relative 

performances in estimating the in-sample volatilities and correlations. In this respect, we 

employ several Monte Carlo (MC) experiments where the performances of QML and MCL 

methods in estimating the parameters, volatilities and correlations are compared. It is already 

known that MCL methods, being a maximum likelihood method, is asymptotically efficient. 

However, QML method is based on approximations and, hence, inefficient in parameter 

estimation. (See  Sandmann and Koopman, 1998; Jacquier et al., 1994; among others). The 

performance of the QML estimator suffers from the fact that the true transformed errors are 

asymmetrically distributed. On the other hand, the QML method is much easier to implement 

and is easily adaptable to estimate with higher number of series or higher number of 

observations. In the literature there is a need for Monte Carlo simulation studies comparing 

QML and MCL methods, in terms of in-sample volatility and correlation estimations in a 

multivariate setup and for different parameter sets. In this paper, we contribute to filling this 

gap in the literature with a number of MC experiments for several models, and we discuss when 

the QML method performs closer to MCL method and, hence, can be used. 

                                                 
3 Finally, the Monte Carlo Markov Chain (MCMC) methods are receiving much attention since they provide the 

most efficient estimation tools (see Andersen et al., 1999). For a survey on MCMC methods and MCMC estimation 

of several MSV models, see Asai et al. (2006), Meyer and Yu (2000), Chib et al. (2009). MCMC method will be 

outside the scope of this paper. 
4 Tsay (2005) adopted a Cholesky decomposition based approach to ensure the positive definiteness of the 

covariance matrix. The MSV model he proposed is basically the same time varying correlation MSV model as 

considered in Jungbacker and Koopman (2006) with the correlation parameter following a stochastic 

autoregressive process. 
5 Throughout this paper, correlations refer to the correlations between returns, if not otherwise stated. 
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When it is of interest to estimate models with high number of series, the implementation of the 

QML estimator is easier and more feasible than that of the MCL estimator. Moreover, the 

explicit analytical derivatives needed for the MCL estimation may be harder to obtain with 

large cross-sections. One could choose to use numerical derivatives, but the derivatives 

obtained by numerical approximation for large state vectors could be very time consuming and 

numerically unstable. Hence, it is interesting to know when we can use the QML estimator 

instead of MCL estimator, the latter being computationally more costly. 

 

For our MC experiments, we first consider the Constant Correlation MSV model of Harvey et 

al. (1994). As pointed out by Tsui and Yu (1999), the correlations do not have to be constant 

for certain assets. For this reason, we also consider the Time Varying Correlation MSV model 

discussed in Jungbacker and Koopman (2006)6. Another stylized fact is the so called leverage 

effect, which refers to the negative relation between the current returns and future volatilities. 

Black (1976) and Christie (1982) found that there is a negative relation between the ex-post 

volatility of the return rates on assets and the current value of the asset. One way to explain this 

is that decreasing prices of assets (negative returns) imply an increased leverage of the firms, 

which is believed to increase uncertainty and, hence, volatility. (See Ghysels et al., 1996). 

Jungbacker and Koopman (2005) proposed a univariate SV model with leverage and discussed 

how to estimate it via the MCL method. In our paper we discuss a direct multivariate 

generalization of this model and refer to it as MSV with diagonal leverage, where the 

correlations between the standardized innovations of returns and volatilities are diagonal7. 

Furthermore, we discuss the MSV model with non-diagonal leverage, where the correlations 

between the standardized innovations of returns and volatilities are non-diagonal; i.e. the 

standardized innovations of the volatility of series i is correlated with the standardized 

innovations of the returns of series j. We also provide the necessary transformations to estimate 

these two MSV with leverage models via MCL method, which are derived based on the 

univariate estimation in Jungbacker and Koopman (2005). A similar model has been proposed 

by Asai and McAleer (2006) that considers a diagonal leverage between the non-standardized 

innovations8. They estimated this model via the MCL method of  Sandmann and Koopman 

(1998). The two MSV models with leverage discussed in this paper imply a nondiagonal 

leverage matrix in the context of the model of Asai and McAleer (2006, see Appendix 6.2). 

Moreover, the leverage coefficients in their model are proportional to the standard deviations 

of the volatility equation errors, which is a restriction that we do not impose in our models. 

 

The results obtained in this paper confirm that QML estimator has worse finite sample 

performance than MCL estimator. However, under the constant correlations assumption, when 

the true value of the underlying correlation is high and/or when the variances of the SV 

processes are high, the QML estimator is performing closer to the MCL estimator. When we 

allow the correlations to vary over time, the performance of the QML estimator approaches to 

that of the MCL estimator, even with lower correlations. When leverage is allowed in the model, 

the performance of the QML estimator is worse in estimating the underlying correlations, 

compared to its performance in the model without leverage9. Based on our results, we conclude 

that the QML estimator could be used when the series are expected to have high correlations 

                                                 
6 For time varying correlation MSV models also see Yu and Meyer (2006), Tsay (2005) among others. 
7 By standardized innovations, we mean innovations standardized by the variance matrices. 
8 There are other MSV models with leverage proposed by these authors. See Asai and McAleer (2005, 2009, 2011, 

2015). 
9 Given that the true distribution of the log-squared errors is asymmetric and leverage makes this asymmetry worse, 

the decrease in the performance of QML estimator is expected. Thanks to an anonymous referee for pointing this 

out. 
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(whether constant or time varying) and when the variances of the SV processes are high. 

Particularly in the case of MSV models with leverage we do not recommend the use of the 

QML estimator10. 

The paper is organized as follows: in Section 2.1-2.3 we briefly discuss stochastic volatility 

models, and later in Section 2.4, we provide information on how these models can be estimated 

via QML and MCL methods. In Section 3, we explain the set up of our Monte Carlo experiments 

and discuss the results. In Section 4, we estimate a trivariate MSV model with leverage for the 

returns on three major European stock markets. Finally, in Section 5, we discuss further topics 

for research and conclude.  

  

2. MULTIVARIATE STOCHASTIC VOLATILITY (MSV) MODELS 

 

2.1. The Basic Model  

 

The univariate SV model was proposed by, among others, Taylor (1982, 1986). Harvey et al. 

(1994) extended this univariate SV model to a multivariate context, proposing the first 

multivariate SV (MSV) model. If we let yt =
 (y1t, y2t,..., ykt)ꞌ be a k×1 vector of observations at 

time t and ht =
 (h1t, h2t,..., hkt)ꞌ be the corresponding log-volatilities, then this model is defined 

as: 

 ttt Hy 2/1   (2.1) 

where }{},,,{ 21 tkttt hhhh

t ediageeediagH    
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where Γ is a k×1 vector of, and Φ is a k×k matrix of parameters. Ik denotes a k×k identity matrix 

and 0k denotes a k×k matrix of zeros. The covariance matrices Pε and Qη are of the 

corresponding errors εt and ηt. The diagonal elements of Pε are restricted to be equal to one for 

identification purposes; therefore Pε is a correlation matrix. For simplicity, we do not consider 

volatility spillovers; i.e. Φ is a diagonal matrix. However, the volatilities ht are still dependent 

on each other via Qη matrix. Finally, the (i, j) element of Σ0 is the (i, j) element of Qη divided by 

(1–ΦiiΦjj).
11 By construction, this model assumes constant correlation; therefore, following Yu 

and Meyer (2006), we will refer to this model as the Constant Correlation MSV (CCMSV) 

model. In our analysis, we focus on the following parameters, in order: 

Ψ = (vecl(Pε)ꞌ,
 Γꞌ, diag(Φ)ꞌ, vech(Qη)ꞌ)ꞌ.

12 In this model there are k2+2k parameters to estimate.  

 

 

 

 

2.2. Time Varying Correlation MSV  

                                                 
10 To know in advance whether data at hand has leverage effects, one could estimate an MGARCH model (for 

example a multivariate EGARCH model) with leverage/asymmetric effects and analyze the results. 
11 That is, Σ0 satisfies the stationarity condition: Σ0 =ΦΣ0Φ+Qη . Therefore the elements of Σ0 can be obtained by: 

vec(Σ0) = (Ik
2 – ΦΦ)–1vec(Qη), where vec is the operator that stacks the columns of a matrix and  is a Kronecker 

product. 
12 The operator vec stacks all columns of a matrix, while vech stacks the columns of the lower triangular part of a 

matrix and vecl stacks the columns of the strict lower triangular (exluding the leading diagonal from the lower 

triangular matrix) part of a matrix. 
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The Time Varying Correlation MSV model considered in our paper is the one mentioned in 

Jungbacker and Koopman (2006)13. We will refer to this model as TVCMSV. Following the 

notation above, the observation equation (2.1) is modified as: 

 
),0(~

2/1

kt

ttt

IN

DHy




  (2.4) 

where D is a lower unity triangular matrix. The idea is to decompose the conditional variance 

of yt, Var(yt|
 ht)

 = Vt
 = DHtDꞌ, and therefore having a stochastic dynamics behind the variances 

and correlations implied by Vt. If we would call gii,t
 = exp(hi,t

 ) and D = {qij
 ≠ 0 when i > j, 

0 otherwise}, then the implied correlations by the model are given by: 
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This model is also a special case of factor MSV models proposed by Shephard (1996) and 

further studied in Aguilar and West (2000) and Chib et al. (2006) with the number of factors 

being equal to the number of series. A shortcoming of this model is that the driving forces 

underlying the volatility and correlation dynamics are the same; gii,t and qij. The model 

parameters are Ψ = (vecl(D)ꞌ, Γꞌ, diag(Φ)ꞌ, vech(Qη)ꞌ)ꞌ. The number of parameters to be 

estimated in this model is also given by k2+2k. 

 

Tsay (2005) lets the correlation parameters to be dynamic in the sense that the unity lower 

triangular matrix D becomes Dt
 = {qijt

 ≠ 0 when i > j, 0 otherwise}, where qijt follows a Gaussian 

AR(1) process. Then the equation (2.4) becomes: 

 tttt HDy 2/1   (2.5) 

where the [k(k–1)/2]×1 vector qt evolves with the equation: 
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where Λ0 is defined similar to Σ0. We can put this model to a state space form as follows: let 

αt =
 (hꞌt,qꞌt,)ꞌ, ωt =

 ((ηt)ꞌ,(vt)ꞌ)ꞌ, Γ̅
 = (Γꞌ,βꞌ)ꞌ such that: 
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where 

                                                 
13 We chose this model, because its estimation is very similar to that of CCMSV model (see Section 2.4.), and also 

because it is a simpler version of the model proposed in Tsay (2005) based on Choleski decomposition of the 

correlation matrix. 
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The question of how to estimate the TVCMSV model defined via (2.5) and (2.6) via QML and 

MCL methods is left for future research. The model parameters are 

Ψ = (βꞌ, diag(Ψ)ꞌ, Γꞌ, diag(Φ)ꞌ, vech(Qη)ꞌ)ꞌ, and the number of parameters to estimate in this 

model is k2+5k. In our Monte Carlo experiments we only consider the TVCMSV model of 

Jungbacker and Koopman (2006). 

 

2.3. MSV with Leverage Effect  

 

The first MSV model with diagonal leverage we discuss here is a direct generalization of the 

univariate model considered in Jungbacker and Koopman (2005). Changing the definition of 

the errors slightly, we could rewrite the equations (2.1), (2.2) and (2.3) of CCMSV model as 

follows:  

 ttt PHy 
*2/1   (2.7) 
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where L = {λii,
 i = 1,...,k : λii

  [–1,1]} is assumed to be a diagonal matrix. Therefore by 

construction, the MSV with diagonal leverage model defined by equations (2.7) and (2.8) 

implies constant correlation. A transformation similar to the one in Jungbacker and Koopman 

(2005) could be then adapted to write this model in a state space form:  
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where S matrix is a diagonal matrix of the signs of each element of L, while |L| is the absolute 

value of (the elements of) L matrix. (Therefore S|L| = L). P*
 and Q*

 are obtained via Cholesky 

defactorization of P and Q, respectively. The errors are all mutually and serially independent. 

It can be shown that the transformed model in equation (2.9) is consistent with the MSV model 

with leverage defined by equations (2.7) and (2.8). 

 

Defining the state and signal vectors as αt =
 (hꞌt,(Q

*


 η2,t)ꞌ)ꞌ, ηt =
 ((Q*


 η1,t)ꞌ,(Q

*


 η2,t+1)ꞌ)ꞌ and 

Γ̅ = (Γꞌ,0k)ꞌ we have the transformed model ready for MCL estimation: 
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where Γ̅ is defined as above. The parameter vector in this case is 

Ψ = (vecl(P), Γꞌ, diag(Φ)ꞌ, vech(Qη)ꞌ,
 vec(L)ꞌ)ꞌ, which has k2+3k+k(k–1)/2 parameters to 

estimate. 

 

In the model of Asai and McAleer (2006), the leverage matrix between the nonstandardized 

errors of return and volatility equations is given by L̅ = diag(λ1σ11
1/2, λ2σ22

1/2,…, λkσkk
1/2) and 

Qη
 = ση,ij .If we would calculate the leverage matrix in the same manner for our models we 

would obtain L̅ = Q*
LP*

ꞌ, which is not a diagonal matrix; i.e. in the models discussed in this 

section Q*
LP*

ꞌ, is not diagonal whether L is diagonal or not. Therefore, the two models 

discussed here offer a richer structure compared to the one of Asai and McAleer (2006). See 

Appendix 6.2 for the model of Asai and McAleer (2006) and also for further discussion.  

 

Asai and McAleer (2006) estimate their model with the MCL method of Sandmann and 

Koopman (1998). In Section 4, we estimate the MSV with leverage model of Asai and McAleer 

(2006) through the MCL method explained in their paper. On the other hand, the estimation of 

these MSV with leverage models via QML could be done by adopting the transformations in 

Asai and McAleer (2006) and is discussed in Section 2.4.1. We assume throughout the paper 

for simplicity that whenever the true L matrix is non-diagonal, it is symmetric. In reality, this 

is not necessarily the case. Moreover, the symmetricity assumption is not needed for QML 

estimation but is required for MCL estimation, along with the assumption that L is positive or 

negative semi-definite. 

 

2.4. Estimating the MSV Models  

 

From the models we discussed above, we will consider the CCMSV, TVCMSV and MSV 

models with leverage. We estimate all these models by both the QML approach of Harvey et 

al. (1994) and the MCL approach of Jungbacker and Koopman (2006). These estimation 

methods are briefly explained below14.  

 

2.4.1. Quasi-maximum Likelihood (QML) Estimation 

 

In this estimation method, the multivariate return vector yt is put through a log-squared 

transformation in order to obtain a state space formation of the model. For the CCMSV model, 

the observation equation and the state equation are given as: 

                                                 
14 Originally the CCMSV model proposed in Harvey et al. (1994) was estimated by Quasi-maximum Likelihood 

approach while Jungbacker and Koopman (2006) estimated it by their Monte Carlo Likelihood approach. The 

TVCMSV model with deterministic correlation parameter in Jungbacker and Koopman (2006) was estimated via 

their MCL approach. The univariate MSV model with leverage in Jungbacker and Koopman (2005) was estimated 

using MCL method of Jungbacker and Koopman (2006) while Asai and McAleer (2006) estimated their model 

with the MCL approach of Sandman and Koopman (1998). 
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where ι is a vector of ones, the mean of log(ε2
it) is –1.2703, and its variance is π2/2. In fact, the 

distribution of log(ε2
it) is based on a ln (χ2

1) distribution. (See for  Sandmann and Koopman, 

1998, for the univariate and Asai and McAleer, 2006, for the multivariate model). We can 

replace log(ε2
t)

 + 1.2703ι with ξt, whose mean is therefore a vector of zeros and it's covariance 

matrix is given by Pξ, which is defined below. The QML method approximates the distribution 

of ξt with N(0, Pξ). The QML estimation procedure is relatively easy to implement: Kalman 

filter is applied to the log-squared returns and afterwards, the one-step ahead prediction errors, 

and their variances are used to obtain the likelihood function. However, this estimation only 

yields minimum mean square linear estimators, because Kalman filter is a linear filter15. Taking 

into account the non-Gaussian distribution of ξt, the asymptotic standard errors can be obtained 

following Dunsmuir (1979). Harvey (1989) notes that these asymptotic standard errors can not 

be used for testing if the parameters in the matrix Qη are significantly different from zero. On 

the other hand usual quasi-maximum likelihood theory applies, and the Bollerslev-Wooldridge 

(1992) robust standard errors can be used. To estimate the in-sample estimates of volatilities 

and correlations, a Kalman smoothing algorithm is employed. 

 

In Harvey et al. (1994) the ij-th element of the covariance matrix Pξ is given by (π2/2)p*
ij, where 

p*
ii

 = 1 and:  
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s s
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
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where (x)s =
 x(x+1)...(x+s–1). In our implementation, we first maximize with respect to the 

variable p2
ij, and then after the maximization we obtain |p2

ij|. The sign of p2
ij can be recovered 

from the sign of the product of the corresponding pair of observations, i.e. yiyj. If more than half 

of the multiplications yiyj are positive, then the sign of pij is positive. 

 

Although, the QML method provides consistent estimators, because of the Gaussian 

approximation, it is likely to have poor sample properties. Jacquier et al. (1994), Breidt and 

Carriquiry (1996), and  Sandmann and Koopman (1998) are some of the papers that document 

the inefficiency of the QML estimation. 

 

One problem with the QML estimation is the existence of inliers, i.e. due to missing data or 

simply by chance some returns will be zero or very close to zero. Therefore a log-squared 

transformation of this return will explode. To take care of this, several methods are used in the 

literature. Kim et al. (1998) considered a transformation such as log(y2
t +

 c), where c = 0.001, 

while Fuller (1996) assumed a data driven transformation. We follow here the transformation 

discussed in  Sandmann and Koopman (1998), where the values of log(y2
t), which are less than 

‒20, are set equal to –20. 

 

Ruiz (1994) and Harvey et al. (1994) suggest that the intercept of the SV process could be 

obtained directly from the observations via a moment estimator, and the loglikelihood is 

optimized for the rest of the parameters. This could prove useful when the cross section is large. 

In fact, this approach could also be used for the MCL estimation when the errors are assumed 

to be Gaussian as in QML estimation. However, in this paper we preferred to estimate all 

parameters by maximizing the loglikelihood. 

                                                 
15 How to improve the performance of QML estimators in a multivariate setting using a nonlinear filter is an 

interesting topic for future research. Watanabe (1999) used a nonlinear filtering to improve the performance of 

QML estimators in a univariate setting. 
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The estimation of TVCMSV model via QML method is very similar to the estimation of the 

CCMSV model. The only difference is that in the estimation, the log-squared transformation 

should be applied to D–1yt and the resulting loglikelihood function contains an additional term: 

Tlog(det (D)). Given that in the TVCMSV set up in our paper the D matrix is lower unity 

triangular, its determinant is one, and therefore, this additional term is equal to zero16.  

 

For estimating the MSV model with (diagonal or nondiagonal) leverage via QML method, the 

log-squared transformation as discussed in Asai and McAleer (2006) can be applied to the 

model: 

 
**

1

22 )log()log(

tttt

ttttt

hh

hhy











   

where 

 






































)(
2

2

)](}
2

[{

)(

),0(~

1*

1*

111

,

*

,

**

*

,

*





















tt

tt

tttt

ttt

tt

scRPLL

sPL

LPssPPLLPL

LE

N



    

where st is a vector constructed from the signs of the returns in yt vector, c = –1.2703, and the 

expressions for P|ε| and R|ε| can be found in the appendix of Asai and McAleer (2006). As 

expected, when the parameter values in L̅ matrix are equal to zero in the equations above, the 

state space form representation of CCMSV is obtained. Using this transformation, it is 

straightforward to estimate the MSV models with leverage by QML method by using a properly 

constructed Kalman filtering. 

 

2.4.2.  Monte Carlo Likelihood (MCL) Estimation  

 

Proposed by Durbin and Koopman (1997) and Shephard and Pitt (1997), this estimation method 

is based on constructing the likelihood function for general state space models using Monte 

Carlo techniques.  Sandmann and Koopman (1998) put the log-squared transformed returns to 

a linear non-Gaussian state space form and proceed with the estimation taking into account the 

true distribution of the log-squared transformed errors. What we refer to as the MCL method in 

this paper is the method proposed by Jungbacker and Koopman (2006), which extended the 

method of Durbin and Koopman (1997) for the observation vector without the log-squared 

transformation. Other simulated maximum likelihood methods are considered by Danielsson 

and Richard (1993) and Liesenfeld and Richard (2003). In the MCL method, the loglikelihood 

function is obtained as a sum of a Gaussian part, constructed via Kalman filter, and a minor 

remainder part, which is evaluated using simulations. Therefore the MCL method only needs a 

small number of simulations to achieve the desirable accuracy for empirical analysis. 

 

                                                 
16 Alternatively the D matrix could have been defined as a lower triangular matrix, with nonzero values in the 

leading diagonal and the intercept term in the volatility equation, Γ, is a vector of zeros. Then the additional term 

in the loglikelihood would be different than zero. See Jungbacker and Koopman (2006) for details. 
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After some manipulations, Durbin and Koopman (1997) showed that the likelihood function 

for the non-Gaussian model based on importance sampling can be written by: 
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where pG(y) represents the Gaussian likelihood function of the approximating model, which is 

defined by: 
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then Gt =
 –p̈(y

t
|ĥt)

-1
 for t = 1,...,N and ĥ is the mode of p(h| y). In this paper, the models 

considered have p(h) = pG(h), therefore further simplification can be done on the likelihood. 

 

By defining ỹt =
 ĥt

 + Gt ṗ(yt|ĥt), it can be shown that the first and second derivatives of log p(h|y) 

and log p(h| ỹ) agree in the mode ĥ. Using the algorithm in Jungbacker and Koopman (2006) 

based on Kalman filtering and smoothing, one can compute this mode (see Jungbacker and 

Koopman, 2006, for an illustration with a univariate SV model). Later the Monte Carlo 

estimator of the likelihood is then given by: 
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where M is the number of samples to be generated from pG(h| ỹ) using the simulation smoother 

algorithm of Jong and Shephard (1995) or Durbin and Koopman (2002). However, as noted in 

Jungbacker and Koopman (2005), when Gt
 = – p̈(yt|ĥt)

–1 is not positive definite, the simulation 

smoothing method of Durbin and Koopman (2002) cannot be used. In our estimations we take 

the number of draws as M = 200. 

 

In the case of CCMSV model, first and second derivatives ṗ(yt|ht) and p̈(yt|ht) can be obtained 

from the conditional density: 

 
tt

k

i

ittt dPdPhkhyp 1

1

5.0))log(det(5.05.0)2log(5.0)|(log 



      

for t = 1,…,T, where dt
 = Ht

–1/2yt
 . The possible existence of an indefinite matrix for p̈(y

t
|ĥt) 

requires the approach of Jungbacker and Koopman (2005). As Jungbacker and Koopman (2006) 

suggested, when the model gets too complicated or when explicit expressions for ṗ(yt|ht) and 

p̈(yt|ht) can not be obtained analytically, as a last resort numerical approximations can be used. 

For the CCMSV model the analytical derivatives are provided by Jungbacker and Koopman 

(2006), and these can also be used to obtain the derivatives for TVCMSV. In our estimations, 

we used analytical derivatives also for the MSV with leverage models, and we provide them in 

the appendix. 

 

Finally, the in-sample estimates of the underlying volatilities can be obtained from the 

smoothed estimate of the state vector α, (which is just volatilities in the case of the CCMSV 

and TVCMSV models, but a larger vector in MSV models with leverage) that can be computed 

from: 
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where αi is a draw from the conditional density pG(α|y) for the approximating Gaussian linear 

model. When making these draws, the simulation device mentioned in Jungbacker and 

Koopman (2005) is used to increase the computational efficiency. This device is based on an 

unconditional draw from p(α) and on a conditional mean adjustment (see Jungbacker and 

Koopman, 2005, for details). 

 

In our experience, the computational time required for MCL estimation turned out to be high 

compared to that of the QML estimation. Especially when the sample size or the cross-section 

size is increased, it takes our code more time to converge than it does for QML estimation. On 

the other hand, when the cross-section size is large, it is not that obvious to write the analytical 

derivatives, and if instead one considers numerical derivatives in this case, then the derivatives 

calculated with respect to large state vectors could be very time consuming and numerically 

unstable (see also Jungbacker and Koopman, 2006). Meanwhile, QML method is 

computationally more convenient and also more flexible for considering a higher cross-section 

size. 

 

3. MONTE CARLO EXPERIMENTS 

 

In this section, we report the results of our Monte Carlo (MC) experiments. Our aim is to 

compare the performance of QML and MCL methods when estimating the models considered 

in this paper for several different parameter sets. For each model and parameter set, we 

generated B = 500 bivariate time series vectors of dimension with sample size T = 500.17 For 

comparison purposes, we look at the performances in parameter estimation as well as in in-

sample smoothed volatility and correlation estimations. The estimation results are reported in 

terms of MC means of parameter estimates, corresponding MC standard deviations and root 

mean squared error for each parameter estimate as a measure of efficiency18. Moreover, we 

provide figures of kernel density estimates of the mean deviations and mean absolute deviations 

of estimated log-volatilities, ĥit, and correlations, p̂t, from their true values19. These deviations 

are calculated for each series over the number of simulations B; i.e. for each t: 
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where |.| is an absolute value. Given that in the case of Constant Correlation MSV (CCMSV) 

and MSV models with leverage the correlations are constant (the correlation estimate is actually 

a parameter estimate), the kernel density estimate of the deviations of B different estimates of 

the correlation parameter from the true correlation parameter will be plotted. However, for the 

Time Varying Correlation MSV (TVCMSV), as in the case of volatilities, the kernel density 

                                                 
17 We also consider a trivariate time series vector and sample sizes T = 200 and T = 1000 with the parameter set of 

the first experiment of the CCMSV model. 
18 For comparison purposes, in case of MSV with leverage models as well we report the results for the parameters 

in Pε and Qη matrices, instead of reporting the results for the Cholesky factors in their formulation (see section 

$2.3$). 
19 It should be noted that ĥit,b

 – hit,b, is a log-difference, while p̂t,b
 – pt,b is only a difference. Therefore the latter is 

divided by pt,b to have the same sense of percentage deviation. 
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estimates of Δp̂t and |Δp̂t| are plotted. Finally, mean absolute errors (MAE) and root mean 

squared errors (RMSE) of the volatility and correlation estimates are also reported. In this case, 

the MAE and the RMSE are calculated as: 
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Estim.\Param.  {Pε}21 Γ11 Γ21 Φ11 Φ22 {Qη}11 {Qη}21 {Qη}22 

Exp 1/T = 200, True  0.2000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800 
QML  0.2589 -0.2080 -0.2819 0.8031 0.8938 0.3126 0.0505 0.1736 

 (0.2288) (0.2670) (0.4039) (0.2114) (0.1395) (0.4733) (0.1094) (0.3725) 

 [0.2363] [0.2880] [0.4315] [0.2325] [0.1504] [0.5004] [0.1099] [0.3841] 
MCL  0.2011 -0.2074 -0.2872 0.8023 0.8908 0.2297 0.0558 0.1192 

 (0.0710) (0.2247) (0.3268) (0.1908) (0.1212) (0.1734) (0.0668) (0.1100) 

 [0.0710] [0.2490] [0.3626] [0.2143] [0.1349] [0.1909] [0.0686] [0.1168] 

Exp 1, True  0.2000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800 

QML  0.1815 -0.1527 -0.2189 0.8478 0.9164 0.2425 0.0459 0.1327 

 (0.1804) (0.1496) (0.2911) (0.1348) (0.1050) (0.2880) (0.0596) (0.1881) 

 [0.1814] [0.1586] [0.3043] [0.1445] [0.1102] [0.3025] [0.0599] [0.1953] 
MCL  0.1955 -0.1249 -0.1654 0.8754 0.9361 0.1663 0.0409 0.0869 

 (0.0454) (0.0608) (0.0845) (0.0519) (0.0319) (0.0669) (0.0271) (0.0399) 

 [0.0456] [0.0657] [0.0916] [0.0574] [0.0348] [0.0689] [0.0271] [0.0405] 

Exp 1/T = 1000, True  0.2000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800 

QML  0.1712 -0.1245 -0.1611 0.8751 0.9383 0.1933 0.0457 0.0979 

 (0.1545) (0.0802) (0.0905) (0.0741) (0.0338) (0.1566) (0.0304) (0.0639) 
 [0.1572] [0.0838] [0.0957] [0.0782] [0.0357] [0.1624] [0.0309] [0.0664] 

MCL  0.1991 -0.1137 -0.1493 0.8853 0.9426 0.1587 0.0415 0.0844 

 (0.0313) (0.0376) (0.0495) (0.0343) (0.0187) (0.0472) (0.0176) (0.0245) 
 [0.0313] [0.0401] [0.0532] [0.0373] [0.0201] [0.0480] [0.0176] [0.0249] 

Exp 2, True  0.2000 -0.1000 -0.1300 0.9000 0.9800 0.1500 0.0400 0.0800 

QML  0.1799 -0.1608 -0.2323 0.8411 0.9643 0.2425 0.0438 0.0992 
 (0.1848) (0.1572) (0.3096) (0.1430) (0.0473) (0.2837) (0.0485) (0.0882) 

 [0.1859] [0.1686] [0.3261] [0.1546] [0.0499] [0.2984] [0.0486] [0.0902] 

MCL  0.2007 -0.1305 -0.2015 0.8704 0.9690 0.1720 0.0435 0.0852 
 (0.0435) (0.0670) (0.1225) (0.0616) (0.0188) (0.0752) (0.0288) (0.0326) 

 [0.0435] [0.0736] [0.1418] [0.0684] [0.0218] [0.0784] [0.0291] [0.0330] 

Exp 3, True  0.2000 -0.1000 -0.1300 0.9000 0.9500 0.4000 0.1500 0.3500 

QML  0.1923 -0.1244 -0.1575 0.8754 0.9388 0.4748 0.1573 0.3733 
 (0.1784) (0.0759) (0.0856) (0.0555) (0.0277) (0.2547) (0.0749) (0.1573) 

 [0.1785] [0.0797] [0.0899] [0.0607] [0.0299] [0.2655] [0.0753] [0.1590] 

MCL  0.2003 -0.1110 -0.1461 0.8878 0.9429 0.3927 0.1452 0.3374 
 (0.0469) (0.0506) (0.0574) (0.0349) (0.0191) (0.0979) (0.0539) (0.0820) 

 [0.0469] [0.0518] [0.0597] [0.0370] [0.0204] [0.0981] [0.0541] [0.0829] 

Table 3.1 The parameter estimation results of the simulations where the data is generated by a CC-MSV model 

and estimated via QML and MCL methods.  

Notes: The sample size is T = 500, if not noted otherwise. For each experiment, the true parameter values are 

reported in the first row. Then for each estimation method, MC mean, standard deviation (in parantheses) and root 

mean squared error (in square brackets) of the parameter estimates are reported, respectively. Experiments 1-3. 

 

For the CCMSV model, the true values of Ψ = (vecl(P)ꞌ, Γꞌ, diag(Φ)ꞌ, vech(Qη)ꞌ)ꞌ parameters are 

chosen close to the ones in Harvey et al. (1994) and Jungbacker and Koopman (2006). The true 

values of the parameters and the parameter estimation results are given in Tables 3.1 and 3.2. 

These results for the CCMSV model confirm the previous results in the literature that the finite 

sample performance of MCL is better than that of QML; i.e. the QML method is less efficient. 

The kernel density estimates of the mean and absolute mean deviations are plotted in Figures 

3.1-3.4. Finally, the MAE's and RMSE's of the volatility and correlation estimates are given in 

Table 3.3. We can summarize the results in these tables and figures as follows. For the first 

experiment (Exp. 1) of CCMSV model, increasing the sample size from T = 200 to T = 500 and 

then to T = 1000 increases the efficiency of both QML and MCL parameter estimators, while it 

does less so for the QML method. Similarly, the MAE's and RMSE's of the deviations from 
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true volatilities and correlations improve for both methods. This can be confirmed from Figure 

3.1.  

 
Estim.\Param.  {Pε}21 Γ11 Γ21 Φ11 Φ22 {Qη}11 {Qη}21 {Qη}22 

Exp 4 - True  0.2000 -0.1000 -0.1300 0.9000 0.9800 0.4000 0.1500 0.3500 

QML  0.1933 -0.1244 -0.1937 0.8755 0.9702 0.4637 0.1509 0.3590 

 (0.1854) (0.0713) (0.1087) (0.0552) (0.0161) (0.2416) (0.0773) (0.1149) 
 [0.1855] [0.0753] [0.1260] [0.0604] [0.0188] [0.2499] [0.0773] [0.1153] 

MCL  0.1989 -0.1146 -0.18451 0.8850 0.9716 0.3976 0.1493 0.3436 

 (0.0443) (0.0492) (0.0938) (0.0350) (0.0134) (0.0968) (0.0567) (0.0766) 
 [0.0443] [0.0514] [0.1088] [0.0381] [0.0158] [0.0968] [0.0567] [0.0769] 

Exp 5 - True  0.8000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800 

QML  0.8038 -0.1677 -0.2246 0.8361 0.9149 0.2706 0.0585 0.1372 

 (0.0408) (0.1510) (0.2631) (0.1342) (0.0951) (0.2873) (0.0666) (0.1842) 
 [0.0410] [0.1655] [0.2796] [0.1486] [0.1014] [0.3116] [0.0691] [0.1928] 

MCL  0.7980 -0.1231 -0.1786 0.8769 0.9324 0.1630 0.0467 0.0972 

 (0.0183) (0.0598) (0.2028) (0.0515) (0.0670) (0.0834) (0.0450) (0.1654) 
 [0.0184] [0.0641] [0.2085] [0.0565] [0.0693] [0.0844] [0.0455] [0.1663] 

Exp 6 - True  0.8000 -0.1000 -0.1300 0.9000 0.9800 0.4000 0.1500 0.3500 

QML  0.8048 -0.1304 -0.1856 0.8717 0.9711 0.4860 0.1658 0.3601 
 (0.0422) (0.0749) (0.1025) (0.0561) (0.0152) (0.2275) (0.0874) (0.1038) 

 [0.0424] [0.0808] [0.1166] [0.0629] [0.0176] [0.2432] [0.0888] [0.1043] 

MCL  0.7782 -0.1162 -0.1722 0.8873 0.9735 0.3880 0.1691 0.3385 
 (0.0360) (0.0496) (0.0878) (0.0325) (0.0125) (0.1209) (0.0766) (0.0759) 

 [0.0421] [0.0522] [0.0974] [0.0349] [0.0141] [0.1215] [0.0789] [0.0768] 

Exp 7 - True  0.8000 -0.1000 -0.1300 0.9000 0.9500 0.4000 0.1500 0.3500 
QML  0.8042 -0.1236 -0.1655 0.8768 0.9366 0.4609 0.1585 0.3837 

 (0.0433) (0.0693) (0.0864) (0.0561) (0.0296) (0.2321) (0.0909) (0.1509) 

 [0.0435] [0.0732] [0.0934] [0.0607] [0.0325] [0.2399] [0.0913] [0.1546] 
MCL  0.7790 -0.1124 -0.1485 0.8903 0.9438 0.3762 0.1581 0.3365 

 (0.0320) (0.0553) (0.0754) (0.0415) (0.0239) (0.1086) (0.0870) (0.1186) 

 [0.0382] [0.0566] [0.0777] [0.0426] [0.0247] [0.1111] [0.0874] [0.1193] 

Exp 8 - True  0.8000 -0.1000 -0.1300 0.9000 0.9800 0.1500 0.0400 0.0800 
QML  0.8069 -0.1661 -0.2187 0.8362 0.9662 0.2669 0.0493 0.0991 

 (0.0412) (0.1706) (0.1946) (0.1539) (0.0305) (0.3193) (0.0492) (0.0734) 

 [0.0417] [0.1830] [0.2139] [0.1666] [0.0335] [0.3400] [0.0501] [0.0758] 
MCL  0.7966 -0.1189 -0.1819 0.8804 0.9719 0.1556 0.0449 0.0827 

 (0.0174) (0.0520) (0.0954) (0.0452) (0.0145) (0.0636) (0.0268) (0.0277) 

 [0.0178] [0.0553] [0.1086] [0.0493] [0.0166] [0.0638] [0.0273] [0.0278] 

Table 3.2 The parameter estimation results of the simulations where the data is generated by a CC-MSV model 

and estimated via QML and MCL methods. 

Notes: The sample size is T = 500, if not noted otherwise. For each experiment, the true parameter values are 

reported in the first row. Then for each estimation method, MC mean, standard deviation (in parantheses) and root 

mean squared error (in square brackets) of the parameter estimates are reported, respectively. Experiments 4-8. 

 

We can see in Table 3.3 that while the ratio of MAE's and RMSE's volatility estimates of QML 

to that of MCL are more or less similar across these sample sizes, the efficiency of the QML 

estimator of correlation parameter improves relatively less compared to that of the MCL 

estimator. We also performed a trivariate experiment as an extension to the first experiment. 

We chose the parameter values for the third series similar to the first two series and considered 

a sample size of T = 500. The results that we obtained are similar, hence are not reported here 

but are available from the author upon request. 

 

We can conclude that the efficiency of QML and MCL estimators of the correlation parameter 

increases as the two series become more correlated. (p = 0.2 vs p = 0.8; see experiments 1 vs 5, 

2 vs 8, 3 vs 7 and 4 vs 6). However, this conclusion does not hold for all the parameters. Also 

the QML/MCL ratio of MAE's and RMSE's of the deviations from true correlations decreases, 

implying that QML estimator of the correlation parameter improves relatively more compared 

to MCL estimator. When the series are less correlated (p = 0.2), the QML doesn't estimate the 

correlation parameter very accurately; even though the mean is more or less around the true 

value, we observe a relatively high variance. This can be confirmed visually from the third 

columns of Figures 3.1-3.4. 
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When the second autoregressive parameter, Φ22, is higher we observe that the RMSE of the 

QML and MCL estimates of Φ22 and Q22 are less. (Φ22
 = 0.95 vs Φ22

 = 0.98; see experiments 1 

vs 2, 5 vs 8, 3 vs 4 and 6 vs 7). We also observed that the QML estimator of the correlation 

parameter is performing slightly worse. 

 
MAE Method |Δ|h1t |Δ|h2t |Δ|p RMSE Method Δh1t Δh2t Δp 
Exp1 QML 0.5584 0.4968 0.2080 Exp1 QML 0.7113 0.6321 0.2363 

T=200 MCL 0.4821 0.4164 0.0576 T=200 MCL 0.6098 0.5286 0.0710 

 QML/MCL 1.1582 1.1931 3.6129  QML/MCL 1.1665 1.1959 3.3267 
Exp1 QML 0.5292 0.4655 0.1632 Exp1 QML 0.6693 0.5883 0.1814 

T=500 MCL 0.4529 0.3903 0.0355 T=500 MCL 0.5701 0.4925 0.0456 

 QML/MCL 1.1685 1.1928 4.5959  QML/MCL 1.1740 1.1947 3.9749 
Exp1 QML 0.5141 0.4470 0.1402 Exp1 QML 0.6470 0.5626 0.1572 

T=1000 MCL 0.4487 0.3816 0.0254 T=1000 MCL 0.5644 0.4809 0.0313 

 QML/MCL 1.1458 1.1716 5.5240  QML/MCL 1.1463 1.1699 5.0245 
Exp2 QML 0.5276 0.4932 0.1698 Exp2 QML 0.6669 0.6315 0.1859 

 MCL 0.4536 0.4275 0.0351  MCL 0.5710 0.5560 0.0435 

 QML/MCL 1.1632 1.1539 4.8401  QML/MCL 1.1679 1.1358 4.2731 
Exp3 QML 0.6941 0.6841 0.1618 Exp3 QML 0.8755 0.8680 0.1785 

 MCL 0.6209 0.6134 0.0374  MCL 0.7834 0.7850 0.0469 

 QML/MCL 1.1179 1.1153 4.3253  QML/MCL 1.1176 1.1057 3.8052 

Exp4 QML 0.6916 0.7483 0.1679 Exp4 QML 0.8717 0.9899 0.1855 

 MCL 0.6206 0.6996 0.0354  MCL 0.7822 0.9468 0.0443 
 QML/MCL 1.1144 1.0697 4.7385  QML/MCL 1.1144 1.0456 4.1828 

Exp5 QML 0.5307 0.4682 0.0329 Exp5 QML 0.6718 0.5933 0.0410 

 MCL 0.4322 0.3749 0.0144  MCL 0.5456 0.4804 0.0184 
 QML/MCL 1.2280 1.2482 2.2885  QML/MCL 1.2313 1.2350 2.2326 

Exp6 QML 0.6966 0.7587 0.0338 Exp6 QML 0.8798 1.0041 0.0424 

 MCL 0.6027 0.7149 0.0270  MCL 0.7626 0.9955 0.0421 
 QML/MCL 1.1559 1.0612 1.2516  QML/MCL 1.1538 1.0086 1.0089 

Exp7 QML 0.6964 0.6894 0.0353 Exp7 QML 0.8835 0.8736 0.0435 

 MCL 0.6006 0.6021 0.0258  MCL 0.7587 0.7675 0.0382 
 QML/MCL 1.1645 1.1450 1.3679  QML/MCL 1.1645 1.1382 1.1377 

Exp8 QML 0.5330 0.5024 0.0339 Exp8 QML 0.6756 0,6442 0.0417 

 MCL 0.4316 0.4211 0.0142  MCL 0.5432 0.5523 0.0178 
 QML/MCL 1.2349 1.1930 2.3861  QML/MCL 1.2438 1.1665 2.3471 

Table 3.3 Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and MCL volatility and 

correlation estimates for CC-MSV model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Kernel density estimates of the deviations of MCL and QML volatility and correlation estimates from 

the true ones, for the CCMSV model. Experiments 1 to 4.  
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Figure 3.2 Kernel density estimates of the absolute deviations of MCL and QML volatility and correlation 

estimates from the true ones, for the CCMSV model. Experiments 1 to 4.  

 
 
 

 

 

 

 

 

Figure 3.3 Kernel density estimates of the deviations of MCL and QML volatility and correlation estimates from 

the true ones, for the CCMSV model. Experiments 5 to 8.  
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Figure 3.4 Kernel density estimates of the absolute deviations of MCL and QML volatility and correlation 

estimates from the true ones, for the CCMSV model. Experiments 5 to 8.  

 
 

When the variance of the SV processes, the parameters in Q, are higher we see that the 

efficiencies of QML and MCL estimators of correlation parameter do not change much. (See 

experiments 1 vs 3, 2 vs 4, 5 vs 7 and 6 vs 8) The RMSE's of QML and MCL estimators of 

many parameters are lower. QML and MCL estimators gain efficiency in estimating the 

intercept $Gamma $ and the autoregressive coefficients Φ. For both QML and MCL estimators, 

the higher variance in the SV processes result in higher deviations from the true volatilities. On 

the other hand the QML/MCL ratio of the MAE's and RMSE's of the deviations from true 

volatilities and correlations improve. It is also observed that when p = 0.8, the higher variance 

in the SV process affects the efficiency of the MCL correlation estimator negatively. (See 
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experiments 5 vs 7 and 6 vs 8). We observe that when Φ22
 = 0.98 and the variance of the SV 

processes is high, the QML/MCL ratio of the deviations from true volatilities is closer to 1. (See 

experiment 4 and 6). If the underlying correlation parameter is also high, p = 0.8, the QML/MCL 

ratio of the deviations from true correlation is the smallest among all experiments. (See 

experiment 6). 

 
Estim.\Param.  {D}21 Γ11 Γ21 Φ11 Φ22 {Qη}11 {Qη}21 {Qη}22 

Exp 1 - True  0.2041 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800 

QML  0.2035 -0.1664 -0.2037 0.8378 0.9215 0.2614 0.0563 0.1129 

 (0.0208) (0.1751) (0.2679) (0.1542) (0.1004) (0.2945) (0.0611) (0.1542) 
 [0.0208] [0.1873] [0.2779] [0.1663] [0.1044] [0.3149] [0.0632] [0.1577] 

MCL  0.2038 -0.1313 -0.1718 0.8693 0.9338 0.1752 0.0445 0.0901 

 (0.0167) (0.0738) (0.0996) (0.0675) (0.0376) (0.0839) (0.0311) (0.0434) 
 [0.0167] [0.0802] [0.1080] [0.0742] [0.0409] [0.0876] [0.0314] [0.0445] 

Exp 2 - True  1.3333 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800 

QML  1.3357 -0.1633 -0.2130 0.8411 0.9187 0.2621 0.0569 0.1155 

 (0.0197) (0.1724) (0.2750) (0.1478) (0.1008) (0.3097) (0.0636) (0.1499) 
 [0.0198] [0.1836] [0.2872] [0.1591] [0.1056] [0.3294] [0.0658] [0.1541] 

MCL  1.3320 -0.1299 -0.1744 0.8687 0.9332 0.1753 0.0434 0.0908 

 (0.0133) (0.0725) (0.0983) (0.0699) (0.0381) (0.0969) (0.0286) (0.0442) 

 [0.0134] [0.0785] [0.1078] [0.0766] [0.0416] [0.1002] [0.0288] [0.0455] 

Table 3.4 The parameter estimation results of the simulations where the data is generated by a TVC-MSV model 

and estimated via QML and MCL methods.. 

Notes: For each experiment, the true parameter values are reported in the first row. Then for each estimation 

method, MC mean, standard deviation (in paranthesis) and root mean squared error (in square brackets) of the 

parameter estimates are reported, respectively.  

 

For the experiments with the TVCMSV model, the true values for the parameters (except the 

correlation parameter) are chosen from experiment 1 of the CCMSV model. Then two 

experiments are performed where the correlation parameter values of 0.2041 and 1.3333 are 

chosen, such that the correlation between the volatility adjusted returns are 0.2 and 0.8, 

respectively. The parameter estimation results are given in Table 3.4, the kernel density 

estimates of the mean and mean absolute deviations are given in Figure 3.5, and the MSE and 

RMSE of the deviations from true volatilities and correlations are given in Table 3.5.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Kernel density estimates of the deviations and absolute deviations of MCL and QML volatility and 

correlation estimates from the true ones, for the TVCMSV model. 
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MAE Method |Δ|h1t |Δ|h2t |Δ|pt RMSE Method Δh1t Δh2t Δpt 

Exp1 QML 0.5286 0.4617 0.1025 Exp1 QML 0.6672 0.5830 0.1307 
 MCL 0.5226 0.4629 0.0998  MCL 0.6569 0.5830 0.1265 

 QML/MCL 1.0115 0.9974 1.0271  QML/MCL 1.0156 0.9999 1.0334 

Exp2 QML 0.5270 0.4580 0.0364 Exp2 QML 0.6670 0.5784 0.0567 
 MCL 0.5214 0.4593 0.0355  MCL 0.6554 0.5782 0.0542 

 QML/MCL 1.0106 0.9972 1.0249  QML/MCL 1.0177 1.0003 1.0456 

Table 3.5 Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and MCL volatility and 

correlation estimates for the TVCMSV model. 

 

The QML and MCL parameter estimation results (except the correlation parameter) for the 

TVCMSV model are similar to those in the first experiment of the CCMSV model. For both 

experiments, the QML/MCL ratio of the deviations from true volatilities is less in the TVCMSV 

model than in the CCMSV model, mainly because MAE's and RMSE's of the deviations of 

MCL estimates of the volatilities from true ones are higher. Moreover the QML/MCL ratio of 

the MAE and RMSE of the deviations from true correlations is closer to 1 compared to the first 

experiment of CCMSV model. If we compare the two experiments of TVCMSV model, 

increasing the correlation did not change much the parameter estimation results or the 

QML/MCL ratio of the MAE and RMSE of the deviations from true volatilities and 

correlations. However, the MAE and RMSE of the deviations from true correlations decreased 

for both QML and MCL estimates. 
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Estim.\Param.  {Pε}21 Γ11 Γ21 Φ11 Φ22 L11 L22 {Qη}11 {Qη}21 {Qη}22 

Exp 1 - True  0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.2000 -0.2500 0.1500 0.0400 0.0800 

QML  0.1278 -0.1583 -0.2376 0.8483 0.9085 -0.1439 -0.2131 0.2383 0.0525 0.1417 

 (0.2429) (0.1710) (0.2737) (0.1474) (0.1056) (0.2363) (0.3514) (0.2794) (0.0653) (0.2157) 
 [0.2534] [0.1807] [0.2940] [0.1562] [0.1135] [0.2429] [0.3533] [0.2930] [0.0665] [0.2244] 

MCL  0.1995 -0.1328 -0.1700 0.8710 0.9351 -0.1339 -0.1932 0.1753 0.0447 0.0862 

 (0.0458) (0.0735) (0.0883) (0.0645) (0.0328) (0.1395) (0.1970) (0.0838) (0.0275) (0.0371) 
 [0.0458] [0.0805] [0.0969] [0.0707] [0.0360] [0.1544] [0.2050] [0.0876] [0.0279] [0.0376] 

Exp 2 - True  0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.5500 -0.6000 0.1500 0.0400 0.0800 

QML  0.1136 -0.1705 -0.2227 0.8342 0.9148 -0.4002 -0.4782 0.2443 0.0414 0.1122 

 (0.2691) (0.1652) (0.2335) (0.1403) (0.0865) (0.2361) (0.3239) (0.2865) (0.0513) (0.1378) 
 [0.2826] [0.1796] [0.2512] [0.1549] [0.0934] [0.2796] [0.3461] [0.3016] [0.0513] [0.1415] 

MCL  0.2090 -0.1624 -0.1926 0.8477 0.9283 -0.3161 -0.4452 0.1999 0.0456 0.0902 

 (0.0573) (0.1028) (0.0965) (0.0919) (0.0363) (0.1453) (0.1792) (0.1063) (0.0310) (0.0411) 
 (0.0580) [0.1203] [0.1151] [0.1058] [0.0424] [0.2753] (0.2368) (0.1174) (0.0315) (0.0424) 

Table 3.6 The parameter estimation results of the simulations where the data is generated by an MSV model with 

diagonal leverage and estimated via QML and MCL methods.  

Notes: For each experiment, the true parameter values are reported in the first row. Then for each estimation 

method, MC mean, standard deviation (in paranthesis) root mean squared error (in square brackets) of the 

parameter estimates are reported, respectively.  

 
MAE Method |Δ|h1t |Δ|h2t |Δ|p RMSE Method Δh1t Δh2t Δp 

Exp1 QML 0.5437 0.4886 0.2112 Exp1 QML 0.6870 0.6198 0.2534 
 MCL 0.4502 0.3847 0.0363  MCL 0.5684 0.4847 0.0458 

 QML/MCL 1.2077 1.2701 5.8120  QML/MCL 1.2087 1.2787 5.5343 

Exp2 QML 0.5860 0.5164 0.2311 Exp2 QML 0.8763 0.6520 0.2826 
 MCL 0.4600 0.3838 0.0399  MCL 0.5853 0.4876 0.0580 

 QML/MCL 1.2739 1.3455 5.7905  QML/MCL 1.4973 1.3370 4.8741 

Table 3.7 Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and MCL volatility and 

correlation estimates for the MSV model with diagonal leverage. 

 

For the MSV with diagonal leverage model we also perform two experiments, where we take 

all the parameter values from experiment 1 of the CCMSV model. For the additional parameters 

that control for the leverage we chose L = diag{–0.2000, –0.2500}, which are similar to the 

values implied by the empirical estimates obtained in Asai and McAleer (2006) and L = diag{–

0.5500,–0.6000}.20 In Table 3.6, we report these true values of the parameters as well as the 

results of the QML and MCL estimations when the data was generated by an MSV model with 

diagonal leverage. The kernel density estimates of the mean and mean absolute deviations are 

given in Figure 3.6, and the MSE and RMSE of the deviations from true volatilities and 

correlations are given in Table 3.7. Compared with the first experiment of the CCMSV model, 

we observe that the performance of QML estimator of the correlation parameter decrease when 

leverage is introduced, while the performance of MCL estimator of the correlation parameter 

seems to remain similar. This result can be visually confirmed from the third column of Figure 

3.6. In practice this means that for a given data, the QML estimate of the correlation parameter 

could possibly have a value that is very far from the true value. The RMSE's of the other 

parameter estimates are similar to those in the first experiment of the CCMSV model. When 

the leverage is low, the performance of the MCL estimator of the correlation parameter is 

similar to the case of CCMSV, but relatively worse when the leverage is high. The MAE and 

RMSE of the deviations of QML volatility estimates from true ones increase. 

 

When we compare the two experiments with MSV with the diagonal leverage model, a higher 

leverage increased the MAE and RMSE of the deviations of QML volatility and correlation 

estimates from true ones. The QML/MCL ratios of these MAE's and RMSE's increased for the 

volatilities, but for correlations these ratios decreased since the MAE and RMSE of the 

deviations from true correlations increased for the MCL method. The efficiency of MCL 

estimators of the parameters decrease as the leverage increases, which is not the case for all 

                                                 
20 When L = diag{–0.2000,–0.2500}, the diagonal elements in the leverage matrix calculated from Q*

LP*
ꞌ (see 

Appendix 6.2) is {–0.0775,–0.0686} and two examples from Table 3.2 in Asai and McAleer (2006) for these 

parameter estimates are {–0.0588,–0.0631} and {–0.0648,–0.0476}. 
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QML estimators. In both experiments, the MCL estimator of the leverage parameters, although 

having less standard deviation, seems to be further from the true values compared to the QML 

estimator. 

 
Figure 3.6 Kernel density estimates of the deviations and absolute deviations of MCL and QML volatility and 

correlation estimates from the true ones, for the MSV model with diagonal leverage.  

 
 

In two other MC experiments we consider the MSV model with non-diagonal leverage. The 

MCL estimation of this model requires the assumption that the leverage matrix is symmetric 

and positive or negative semi-definite. Therefore, we are interested in understanding what 

happens when this restriction is binding and not binding. In the first experiment (Exp 1) we 

consider a true leverage matrix that is symmetric but indefinite; therefore, the restriction of the 

MCL estimation is binding. In the second experiment (Exp 2), we consider a leverage matrix 

that is symmetric negative definite. The true values of the parameters, except the off-diagonal 

parameter of the leverage matrix, are taken from the first experiment of the MSV model with 

diagonal leverage. The off-diagonal parameter in the first experiment is randomly chosen to be 

high, while in the second experiment it is chosen to be as high as possible under the semi-

definiteness restriction. The QML estimation does not require symmetricity or positive or 

negative semi-definiteness assumptions, although we assume that the leverage matrix is 

symmetric. Moreover, in the first experiment, we also estimate the same data with QML method 

and impose the restrictions on the leverage matrix, referring to the method as QML-restricted. 

 

The parameter estimation results are given in Table 3.8 along with the true parameter values. 

The kernel density estimates of the mean and mean absolute deviations are given in Figure 3.7, 

and the MSE and RMSE of the deviations from true volatilities and correlations are given in 

Table 3.9. When we compare the first experiment with the first experiment of CCMSV we see 

that the unrestricted and restricted QML estimators of the correlation parameter are performing 

much worse, while the MCL estimator is performing similar. The MAE and RMSE of the 

deviations from true volatilities increased for all three estimators and they are very high for the 

unrestricted QML estimator compared to that of restricted QML and MCL. Compared to the 

first experiment of the CCMSV model, although QML-r/MCL ratios of the MAE's and RMSE's 

of the deviations from true volatilities are better, the relative performances of the correlation 
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estimators of both QML methods are much worse than that of the MCL estimator. We obtained 

similar conclusions when comparing the second experiment with the first experiment of 

CCMSV model. 
 

Estim.\Param.  {Pε}21 Γ11 Γ21 Φ11 Φ22 L11 L21 L22 {Qη}11 {Qη}21 {Qη}22 

Exp 1 - True  0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.2000 -0.2300 -0.2500 0.1500 0.0400 0.0800 

QML  0.1339 -0.1676 -0.2229 0.8402 0.9146 -0.1752 -0.1780 -0.1927 0.2456 0.0436 0.1299 

- unrestricted (0.2498) (0.1637) (0.2268) (0.1364) (0.0854) (0.2516) (0.1787) (0.3310) (0.2685) (0.0570) (0.1829) 
 [0.2584] [0.1771] [0.2450] [0.1489] [0.0924] [0.2528] [0.1861] [0.3360] [0.2850] [0.0571] [0.1896] 

QML  0.1291 -0.1681 -0.2266 0.8360 0.9133 -0.1580 -0.1442 -0.2523 0.2622 0.0477 0.1356 

- restricted (0.2441) (0.1646) (0.2444) (0.1470) (0.0912) (0.2178) (0.1723) (0.3228) (0.2827) (0.0669) (0.1895) 
 [0.2542] [0.1782] [0.2628] [0.1604] [0.0984] [0.2219] [0.1925] [0.3229] [0.3042] [0.0673] [0.1975] 

MCL  0.2016 -0.1481 -0.2091 0.8557 0.9208 -0.1659 -0.1232 -0.2218 0.1890 0.0447 0.1033 

 (0.0463) (0.0771) (0.1202) (0.0707) (0.0451) (0.1129) (0.0822) (0.1453) (0.0850) (0.0349) (0.0529) 
 [0.0463] [0.0908] [0.1439] [0.0834] [0.0537] [0.1180] [0.1348] [0.1480] [0.0935] [0.0352] [0.0579] 

Exp 2 - True  0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.2000 -0.0500 -0.2500 0.1500 0.0400 0.0800 

QML  0.1317 -0.1573 -0.2544 0.8465 0.9017 -0.1584 -0.0326 -0.1968 0.2339 0.0437 0.1421 
- unrestricted (0.2487) (0.1619) (0.3360) (0.1535) (0.1301) (0.2462) (0.1815) (0.3342) (0.2744) (0.0603) (0.1960) 

 [0.2579] [0.1717] [0.3583] [0.1625] [0.1387] [0.2497] [0.1824] [0.3384] [0.2870] [0.0604] [0.2056] 

MCL  0.1999 -0.1374 -0.2029 0.8675 0.9226 -0.1508 -0.0104 -0.2094 0.1777 0.0458 0.0994 
 (0.0481) (0.0691) (0.1197) (0.0562) (0.0443) (0.1201) (0.1025) (0.1588) (0.0785) (0.0305) (0.0496) 

 [0.0481] [0.0785] [0.1402] [0.0649] [0.0521] [0.1297] [0.1099] [0.1639] [0.0832] [0.0311] [0.0533] 

Table 3.8 The parameter estimation results of the simulations where the data is generated by an MSV model with 

non-diagonal leverage and estimated via unrestricted QML, restricted QML and MCL methods.  

Notes: Experiment 1 refers to the case where the leverage matrix, L, is indefinite while in Experiment 2 it is 

(negative) definite. The restriction that was imposed to the QML estimation is the one that is required for MCL 

estimation, namely, the L matrix is positive or negative semidefinite. For each experiment, the true parameter 

values are reported in the first row. Then for each estimation method, MC mean, standard deviation (in parenthesis) 

and root mean squared error (in square brackets) of the parameter estimates are reported, respectively.  

 
MAE Method |Δ|h1t |Δ|h2t |Δ|p RMSE Method Δh1t Δh2t Δp 

Exp 1   QML-u  0.8156 0.8540 0.2175  Exp 1   QML-u  1.0391 1.0970 0.2584 

  QML-r  0.5539 0.5147 0.2088    QML-r  0.6993 0.6550 0.2542 
  MCL  0.5215 0.4532 0.0368    MCL  0.6571 0.5723 0.0463 

  QML-u/MCL  1.5641 1.8845 5.9094    QML-u/MCL  1.5814 1.9170 5.5794 

  QML-r/MCL  1.0621 1.1358 5.6728    QML-r/MCL  1.0642 1.1445 5.4877 
Exp 2   QML-u  0.5427 0.4942 0.2181  Exp 2   QML-u  0.6852 0.6268 0.2579 

  MCL  0.5149 0.4464 0.0368    MCL  0.6485 0.5629 0.0481 

  QML-u/MCL  1.0539 1.1070 5.9283    QML-u/MCL  1.0566 1.1134 5.3635 

Table 3.9 Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and MCL volatility and 

correlation estimates for the MSV model with non-diagonal leverage. 

Notes: In Experiment 1 the leverage matrix, L, is indefinite while in Experiment 2 it is (negative) definite.  

 

In the first experiment comparing unrestricted and restricted QML estimation results, we see 

that the restricted QML estimate of the off-diagonal parameter of the leverage matrix is lower. 

This result confirms that the restriction was binding. Both unrestricted and restricted QML 

estimates of the correlation parameter are far from the true value. The MCL estimates have less 

RMSE than the unrestricted and restricted QML estimates for all the parameters, even though 

the MCL estimates of the off-diagonal element of the leverage matrix have high bias. When we 

look at the second experiment where the off-diagonal element of the leverage matrix was 

decreased (from Exp. 1 to Exp. 2), we observed less bias and RMSE for the MCL estimates of 

the parameters. As we observed in the first experiment, the QML estimate of the correlation 

parameter has a much higher RMSE than the MCL correlation estimate. This result can also be 

confirmed from the third column of Figure 3.7. 
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Figure 3.7 Kernel density estimates of the deviations and absolute deviations of MCL and QML volatility and 

correlation estimates from the true ones, for the MSV model with non-diagonal leverage. Exp 1: true leverage 

matrix is indefinite. Exp 2: true leverage matrix is negative definite.  

 
 

Overall, the restricted QML estimator seems to perform closer to the MCL estimator given that 

the same restriction is imposed. We also observed that the QML/MCL ratios of the MAE's and 

RMSE's of the deviations from true correlations increased from the first experiment to the 

second experiment. Although the restriction imposed in the MCL method could cause 

underestimation of the off-diagonal element of the leverage matrix as seen in Table 3.8, the 

volatilities and correlations are estimated by MCL with less RMSE compared to the 

corresponding unrestricted or restricted QML estimator. Finally, compared to the first 

experiment of the MSV model with diagonal leverage, the MAE and RMSE of the deviations 

from true volatilities are higher for the MCL method. 

 

To sum up, our results confirm previous findings in the literature that the QML estimator is 

inefficient in terms of parameter estimation. In the case of the CCMSV model, we found that 

the performance of the QML estimator increases as the series become more correlated and also 

when the SV processes have higher variance. In all of the parameter sets considered, the 

performance of the MCL estimator was superior to that of the QML estimator. For the 

TVCMSV model, we took the parameter set where QML performed poorly in the case of the 

CCMSV model. The performance of the QML estimator relative to the MCL estimator was 

much better compared to the corresponding experiments of CCMSV model, even when the 

correlations were low. For the MSV models with leverage we also took the parameter set where 

QML performed poorly in the case of the CCMSV model. In both diagonal leverage and 

nondiagonal leverage cases, the QML performed worse than the corresponding case of the 

CCMSV model, while MCL performed similarly This result is actually intuitive because QML 

estimation is prone to the asymmetric distribution of the log-squared errors, and this asymmetry 

becomes more severe as the leverage increases. Hence, QML is performing poorly with MSV 

with leverage models, and more so when the leverage parameters are higher. It could be that 

the performance of the QML estimator improves with higher correlation in the data or higher 

variance of the SV processes, but we do not expect it to be better than the cases considered in 

the experiments with CCMSV model. For the nondiagonal leverage case, even when the 



Eratalay-Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study 

42 

 

restriction that MCL method requires that "the leverage matrix should be symmetric and 

positive or negative semi-definite" was binding, MCL was able to capture the underlying 

volatilities and correlations almost as well as in the corresponding case of the CCMSV model. 
 

4. AN EMPIRICAL EXAMPLE  

 

In this section our aim is to find empirical evidence supporting the use of the MSV model with 

non-diagonal leverage, i.e. the return shocks of one series is correlated with the volatility shocks 

of another series. For this estimation, a trivariate series of length 1717 is obtained from the daily 

returns of IBEX 35, FTSE 100, and DAX stock markets for the period between 4/1/2005 and 

4/11/2011.21 The returns are calculated as: 100  log(Pt
 / Pt–1). The descriptive statistics of the 

data is provided in Table 4.10. The IBEX 35 and DAX returns are skewed right, while FTSE-

100 is skewed left. On the other hand, as expected, all series depict high kurtosis. We also report 

the Box-Ljung statistics for serial correlation to 10 lags for the returns and its squared and log-

squared transformations. Box-Ljung statistic for the return series, yt, suggests that the data may 

not be random walks, more likely in the case of FTSE-100. On the other hand, there is strong 

evidence of nonlinearity in the squared returns and log-squared returns; suggesting that there is 

autocorrelation in these series. 
 

Statistics \ Series  IBEX-35 FTSE-100 DAX 

Mean  -0.0034 0.0076 0.0192 

SD  1.5981 1.3667 1.5163 

Skewness  0.1504 -0.1385 0.0346 
Kurtosis  10.7492 10.4146 9.7788 

Maximum  13.4836 9.3842 10.7975 

Minimum  -9.5859 -9.2646 -7.4335 

Box-Ljung test for autocorrelation, p – values 

Q(10), yt  0.0179*** 0.0000*** 0.0152*** 

Q(10), y2
t  0.0000*** 0.0000*** 0.0000*** 

Q(10), log y2
t  0.0000*** 0.0000*** 0.0000*** 

Table 4.10 Descriptive statistics of the returns.  

Notes: *Significant at 10%, **Significant at 5%, ***Significant at 1%. 

 

A univariate SV model with leverage as in equations (2.7) and (2.8) is fit for each of the series. 

The QML and MCL (method of Jungbacker and Koopman, 2006) estimation results for the 

univariate model is given for each series in Table 4.11. From the results of the univariate 

estimation, we see that the MCL estimates imply more persistent SV processes compared to 

QML estimates. MCL estimates of the autoregressive parameter suggest that these SV 

processes are close to random walk. Also, MCL estimates of the leverage coefficients, the 

elements of L, are higher compared to QML estimates. Finally, the leverage parameter estimates 

are close to the parameters used in the second experiment of the MSV with diagonal leverage 

model. 
 

The estimation of the MSV model with nondiagonal leverage requires the restriction that the L 

matrix is symmetric and (positive or negative) semidefinite. This latter restriction is not required 

by the QML estimation. For comparison purposes however, we also estimated the model via 

QML assuming this restriction. The estimation results for the MSV model with nondiagonal 

leverage are given in Table 4.12. If we compare the results of the multivariate estimation with 

the results of the univariate estimation in Table 4.11, we see that the unconstrained and 

constrained QML estimates of the intercept, of the autoregressive parameter, and of the variance 

of the SV process are similar. On the other hand, the self-leverage of each series, that is the 

diagonal of the estimated L matrix, is estimated to be less in magnitude for FTSE-100 and DAX 

indices compared to the univariate results. 

                                                 
21 The data is taken from the finance.yahoo.com webpage at the date of estimation. We chose IBEX 35, FTSE 100 

and DAX indices as they belong to the three of the largest stock markets in Europe. 
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Estim.   Series  Γ Φ L Qη Log-like AIC BIC 

QML   IBEX 35  0.0137 0.9636 -0.5262 0.0693 -3890.6 7789.2 7811.0 

   (0.0012) (0.0055) (0.0944) (0.0080)    

  FTSE 100  0.0003 0.9625 -0.4964 0.0747 -3911.7 7831.4 7853.1 
   (0.0038) (0.0057) (0.0457) (0.0066)    

  DAX  0.0202 0.9480 -0.6653 0.0801 -3902.8 7813.5 7835.3 

   (0.0049) (0.0076) (0.0974) (0.0080)    

MCL   IBEX 35  0.0025 0.9957 -0.6574 0.0049 -2456.7 4921.4 4943.2 
   (0.0002) (0.0012) (0.0007) (0.0002)    

  FTSE 100  -0.0001 0.9965 -0.6022 0.0038 -2149.1 4306.2 4328.0 

    (0.0001) (0.0014) (0.0312) (0.0015)    
  DAX  0.0026 0.9942 -0.8328 0.0044 -2412.3 4832.5 4854.3 

   (0.0002) (0.0014) (0.0113) (0.0003)    

Table 4.11 The empirical estimation results for the univariate SV model with leverage.  

 
QML - unrestricted  {Pε}21 {Pε}31 {Pε}32 Γ11 Γ21 Γ31 Φ11 Φ22 Φ33 L11 L21 

Log-like: -11179  0.8068 0.8720 0.8743 0.0147 0.0046 0.0131 0.9612 0.9548 0.9581 -0.5793 -0.1573 

AIC: 22400  (0.0232) (0.0201) (0.0150) (0.0015) (0.0014) (0.0017) (0.0057) (0.0065) (0.0068) (0.0284) (0.0218) 

BIC: 22515  L31 L22 L32 L33 {Qη}11 {Qη}21 {Qη}31 {Qη}22 {Qη}32 {Qη}33  

 -0.0522 -0.0851 -0.1835 -0.2173 0.0797 0.0788 0.0718 0.0949 0.0754 0.0770  

 (0.0024) (0.0027) (0.0110) (0.0124) (0.0069) (0.0034) (0.0038) (0.0058) (0.0048) (0.0081)  

QML - restricted  {Pε}21 {Pε}31 {Pε}32 Γ11 Γ21 Γ31 Φ11 Φ22 Φ33 L11 L21 

Log-like: -11181  0.8090 0.8730 0.8747 0.0157 0.0061 0.0161 0.9609 0.9506 0.9522 -0.6219 -0.1738 

AIC: 22403  (0.0226) (0.0181) (0.0161) (0.0010) (0.0028) (0.0024) (0.0050) (0.0071) (0.0083) (0.1125) (0.0144) 

BIC: 22518  L31 L22 L32 L33 {Qη}11 {Qη}21 {Qη}31 {Qη}22 {Qη}32 {Qη}33  

 -0.0725 -0.1245 -0.1453 -0.2143 0.0851 0.0883 0.0839 0.1101 0.0899 0.0981  

 (0.0143) (0.0173) (0.0299) (0.0177) (0.0041) (0.0036) (0.0077) (0.0080) (0.0067) (0.0168)  

MCL  {Pε}21 {Pε}31 {Pε}32 Γ11 Γ22 Γ33 Φ11 Φ22 Φ33 L11 L21 

Log-like: -4751  0.8212 0.8297 0.8542 0.0070 -0.0008 0.0043 0.9751 0.9778 0.9755 -0.6465 -0.2151 

AIC: 9543  (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0002) (0.0002) (0.0004) (0.0001) (0.0001) 

BIC: 9658  L31 L22 L32 L33 {Qη}11 {Qη}21 {Qη}31 {Qη}22 {Qη}32 {Qη}33  

p_val/CCMSV: 0.00  -0.1052 -0.1769 -0.1387 -0.2657 0.0397 0.0347 0.0373 0.0305 0.0327 0.0351  

 (0.0019) (0.0195) (0.0224) (0.0377) (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001)  

MCL-CCMSV  {Pε}21 {Pε}31 {Pε}32 Γ11 Γ22 Γ33 Φ11 Φ22 Φ33 {Qη}11 {Qη}21 

Log-like: -5588  0.8413 0.8750 0.8835 0.0053 -0.0006 0.0030 0.9812 0.9833 09827 0.0409 0.0339 

AIC: 11207  (0.0001) (0.0002) (0.0002) (0.0004) (0.0002) (0.0003) (0.0003) (0.0002) (0.0005) (0.0002) (0.0002) 

BIC: 11289  {Qη}31 {Qη}22 {Qη}32 {Qη}33        

 0.0331 0.0328 0.0298 0.0327        

 (0.0003) (0.0002) (0.0003) (0.0003)        

MCL-MSV Leverage  {Pε}21 {Pε}31 {Pε}32 Γ11 Γ22 Γ33 Φ11 Φ22 Φ33 1 2 

Log-like: -10142 0.8188 0.8363 0.8486 -0.0011 -0.0141 -0.0087 0.9710 0.9728 0.9685 -0.0619 -0.0662 

AIC: 20319 (0.0091) (0.0082) (0.0069) (0.0064) (0.0061) (0.0053) (0.0063) (0.0056) (0.0064) (0.0236) (0.0185) 

BIC: 20417 3 {Qη}11 {Qη}21 {Qη}31 {Qη}22 {Qη}32 {Qη}33     

Model of Asai and  -0.0101 0.0589 0.0519 0.0445 0.0499 0.0438 0.0409     

McAleer (2006)  (0.0210) (0.0120) (0.0098) (0.0084) (0.0103) (0.0082) (0.0090)     

Table 4.12 The empirical estimation results for the MSV with non-diagonal leverage model. 

Notes: The data is obtained from the returns of IBEX 35, FTSE 100 and DAX stock markets (in order 1st, 2nd and 

3rd series). The estimation is performed via QML and MCL methods. Bollerslev-Wooldridge robust standard errors 

are obtained for the QML estimates while the standard errors of MCL estimates are obtained from the numerical 

approximation to the Hessian. Restricted QML estimation is the one where the restriction needed for MCL 

estimation is also employed in the QML estimation only for comparison reasons.  

 

The MCL estimates of the autoregressive parameters are higher in the univariate estimation 

compared to the multivariate estimation, while the estimates of the self-leverage of each series 

are lower in the multivariate estimation. The MCL estimates of the autoregressive parameters 

are higher, whereas the MCL estimates of elements of the variance matrix of the SV process 

are lower; this is due to the fact that the estimation tries to match the unconditional variance in 

the data, and when the estimates of the autoregressive parameters are high, the variance matrix 

of the SV process is pushed downwards. 

 

When we look at the leverage matrix estimates, we see that MCL estimates of the diagonal 

elements of L matrix are higher compared to both of the QML estimates. The MCL leverage 

parameter estimates are statistically significant. Moreover, the likelihood ratio test to compare 

the MCL estimation results of CCMSV and MSV-NDL models suggest that the data is better 

explained by the latter model22. Figure 4.8 shows, for each series, the absolute values of the 

returns plotted along with the restricted QML and MCL smooth estimates of the standard 

                                                 
22 The likelihood ratio test can't be used with the QML estimation because it is based on approximations. 
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deviations. In the periods after the big volatility shocks, QML estimates of the underlying 

volatilities have been observed to be higher than the MCL estimates (for example around 

t = 1000). Finally, the MCL estimates of the standard deviations follow the absolute values of 

the returns closely, while QML estimates are experiencing some jumps when volatility of the 

data is increasing. 

 
Figure 4.8 Absolute values of the returns and the MCL and QML smooth estimates of the standard deviations for 

IBEX 35, FTSE 100 and DAX stock markets between 4/1/2005 - 4/11/2011. Data source: Yahoo Finance. 

 
 

Another way to evaluate the results could be to see how much each model's estimate of 

volatilities are correlated true volatilities. To approximate the true volatilities, we use three 

different proxies: squared returns, rolling window estimate of volatilities with 60 days window, 

and Riskmetrics volatility estimates23. Table 4.13 and 4.14 give the correlations between the 

volatility proxies and volatility estimates in logarithms and levels, respectively. The first thing 

to notice is that correlations between levels are higher than they are between logs. In Table 4.13, 

the highest correlations are between the log-proxies and the log-volatility estimates of MSV 

with leverage model of Asai and McAleer (2006), with the exceptions of correlations between 

log-squared returns and log-volatility estimates of MSVNDL model for IBEX-35 and FTSE-

100 series. In Table 4.14, the highest correlations between the proxies and volatility estimates 

again correspond to MSV with leverage model of Asai and McAleer (2006), with the exceptions 

of the correlations between rolling window and Riskmetrics proxies and MSVNDL volatility 

estimates for FTSE-100. 

 

We also make a comparison between the proxies and the volatility estimates based on some 

loss functions given below. If for series i we would call our proxy of true volatility as σ2
it and 

volatility estimate as g2
it=exp (hit) (where hit is the log-volatility estimates): 

                                                 
23 Andersen and Bollerslev (1998) show that r2

t is a very noisy estimate of the volatility. 
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IBEX-35 
Log.Sq. 

Ret. 
Log.Roll. 

Wind. 
Log. 

Riskmetrics 
MSVNDL-

QML_u 
MSVNDL-

QML_r 
MSVNDL-

MCL 
CCMSV-

MCL MSVL_MCL 

Log.Sq.Ret. 1.0000        

Log.Roll.Wind. 0.3629 1.0000       
Log.Riskmetrics 0.4198 0.9346 1.0000      

MSVNDL-QML_u 0.4218 0.7301 0.7436 1.0000     

MSVNDL-QML_r 0.4156 0.7355 0..7420 0.9977 1.0000    
MSVNDL-MCL 0.4511 0.7972 0.8542 0.8549 0.8428 1.0000   

CCMSV-MCL 0.4225 0.8177 0.8793 0.7188 0.7150 0.9200 1.0000  

MSVL_MCL 0.4394 0.8361 0.8949 0.7825 0.7749 0.9402 0.9483 1.0000 
         

FTSE-100 

Log.Sq. 

Ret. 

Log.Roll. 

Wind. 

Log. 

Riskmetrics 

MSVNDL-

QML_u 

MSVNDL-

QML_r 

MSVNDL-

MCL 

CCMSV-

MCL MSVL_MCL 
Log.Sq.Ret. 1.0000        

Log.Roll.Wind. 0.3193 1.0000       

Log.Riskmetrics 0.3800 0.9426 1.0000      
MSVNDL-QML_u 0.4195 0.6960 0.7190 1.0000     

MSVNDL-QML_r 0.4134 0.6881 0.7039 0.9973 1.0000    

MSVNDL-MCL 0.4264 0.8019 0.8489 0.8500 0.8410 1.0000   
CCMSV-MCL 0.4026 0.8179 0.8702 0.7292 0.7145 0.9297 1.0000  

MSVL_MCL 0.4174 0.8288 0.8831 0.7767 0.7620 0.9369 0.9492  

1.0000         
         

DAX 

Log.Sq. 

Ret. 

Log.Roll. 

Wind. 

Log. 

Riskmetrics 

MSVNDL-

QML_u 

MSVNDL-

QML_r 

MSVNDL-

MCL 

CCMSV-

MCL MSVL_MCL 
Log.Sq.Ret. 1.0000        

Log.Roll.Wind. 0.3286 1.0000       

Log.Riskmetrics 0.3889 0.9330 1.0000      
MSVNDL-QML_u 0.3968 0.7587 0.7772 1.0000     

MSVNDL-QML_r 0.3931 0.7433 0.7552 0.9968 1.0000    

MSVNDL-MCL 0.3937 0.7478 0.8117 0.8109 0.8059 1.0000   
CCMSV-MCL 0.3822 0.7851 0.8558 0.7745 0.7577 0.9143 1.0000  

MSVL_MCL 0.3952 0.7973 0.8711 0.8053 0.7874 0.9327 0.9504 1.0000 

Table 4.13 Correlations between logarithms of volatility proxies (e.g. log-squared returns) and log-volatility 

estimates.  

 

These loss functions are used in Hansen and Lunde (2005). MSE2 and R2LOG are equivalent 

to using R2 from the regressions of the true volatility and true log-volatility, respectively, on the 

volatility estimates. MAD2 and MAD1 are more robust to outliers than the other loss functions. 

PSE measures the percentage squared errors and QLIKE is the loss function implied by a log-

likelihood. On Table 4.15, we present the values of the loss functions for the three models and 

five estimators compared with three proxies. According to these results the losses are smaller 

whether for CCMSV or MSV with leverage model of Asai and McAleer (2006). 

 

One reason why the MSV with leverage model of Asai and McAleer (2006) performed better 

than the MSV with nondiagonal leverage model could be that the true leverage matrix is 

indefinite, and the restriction that we impose to estimate the latter model is limiting its 

performance in estimating the volatility. A result supporting this possibility is that the 

unrestricted QML estimate of the leverage matrix is indefinite. 
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IBEX-35 
Sq. 
Ret. 

Roll. 
Wind. Riskmetrics 

MSVNDL-
QML_u 

MSVNDL-
QML_r 

MSVNDL-
MCL 

CCMSV-
MCL MSVL_MCL 

Sq.ret. 1.0000        

Roll.wind. 0.2923 1.0000       
Riskmetrics 0.4705 0.8588 1.0000      

MSVNDL-QML_u 0.4168 0.5928 0.7625 1.0000     

MSVNDL-QML_r 0.4091 0.5881 0.7562 0.9964 1.0000    
MSVNDL-MCL 0.5092 0.5938 0.8352 0.8421 0.8250 1.0000   

CCMSV-MCL 0.5074 0.5554 0.8159 0.7417 0.7332 0.9364 1.0000  

MSVL_MCL 0.5270 0.6044 0.8562 0.8261 0.8116 0.9722 0.9445 1.0000 
         

FTSE-100 Sq.ret. 

Roll. 

Wind. Riskmetrics 

MSVNDL-

QML_u 

MSVNDL-

QML_r 

MSVNDL-

MCL 

CCMSV-

MCL MSVL_MCL 
Sq.ret. 1.0000        

Roll.wind. 0.3602 1.0000       

Riskmetrics 0.5316 0.8841 1.0000      
MSVNDL-QML_u 0.5146 0.5928 0.8171 1.0000     

MSVNDL-QML_r 0.5068 0.5769 0.8026 0.9982 1.0000    

MSVNDL-MCL 0.5470 0.6381 0.8708 0.8856 0.8716 1.0000   
CCMSV-MCL 0.5413 0.5887 0.8463 0.8593 0.8474 0.9558 1.0000  

MSVL_MCL 0.5610 0.6252 0.8666 0.8863 0.8737 0.9670 0.9742 1.0000 

         

DAX Sq.Ret. 

Roll. 

Wind. Riskmetrics 

MSVNDL-

QML_u 

MSVNDL-

QML_r 

MSVNDL-

MCL 

CCMSV-

MCL MSVL_MCL 

Sq.ret. 1.0000        
Roll.wind. 0.3388 1.0000       

Riskmetrics 0.5019 0.8830 1.0000      
MSVNDL-QML_u 0.4306 0.6163 0.7635 1.0000     

MSVNDL-QML_r 0.4226 0.5821 0.7355 0.9960 1.0000    

MSVNDL-MCL 0.5350 0.5405 0.7924 0.7686 0.7551 1.0000   
CCMSV-MCL 0.5064 0.5699 0.8071 0.7614 0.7458 0.9541 1.0000  

MSVL_MCL 0.5416 0.6146 0.8567 0.8072 0.7915 0.9610 0.9663 1.0000 

Table 4.14 Correlations between volatility proxies (e.g. squared returns) and volatility estimates.  

 

5. CONCLUSIONS  

 

In this paper we compare the performance of Quasi Maximum Likelihood estimation method 

of Harvey et al. (1994) and Monte Carlo Likelihood estimation method of Jungbacker and 

Koopman (2006) in estimating the parameters, as well as in estimating the underlying 

volatilities and correlations via Monte Carlo experiments. For this comparison, we consider the 

Constant Correlation MSV (CCMSV) model of Harvey et al. (1994), the Time Varying 

Correlation MSV (TVCMSV) model of Jungbacker and Koopman (2006), and two MSV 

models with leverage that we discussed in the text. We also provide the transformations of the 

MSV models with leverage necessary for the estimation. 

 

According to our results MCL has better finite sample performance than QML. This finding is 

in accordance with the existing results in the literature. On the other hand, we conclude that (1) 

when the correlations are high and/or dynamic, (2) when the SV variances are high, (3) when 

the model doesn't include leverage effects, QML method can be used. Given the results in the 

literature on the inefficiency of QML estimator in small samples, having a larger sample size 

when using QML method would be an important plus. In other cases, the MCL method should 

be preferred. The implementation of MCL method is relatively more complicated than the QML 

estimation and requires much more time to converge. Moreover, the analytical derivatives 

needed for the MCL estimation may be harder to obtain with large cross-sections. One could 

choose to use numerical derivatives, but the derivatives obtained by numerical approximation 

for large state vectors could be time consuming and numerically unstable. Hence, having an 

idea beforehand if QML estimator will be fine to use is an advantage. A final note is that while 

the MCL method can be considered for fitting the returns of few international stock markets, 

the QML method could be used for the estimation of models with larger cross sections. 

 

As for further research, the inefficiency of the QML method could be improved partially by 

employing a nonlinear filter instead of the Kalman filter. The latter is a linear filter and therefore 
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leads to minimum mean square linear estimators rather than minimum mean squared estimators. 

Watanabe (1999) provides a nonlinear filter for QML estimation for the univariate SV model, 

and extending it to a multivariate setup would be an interesting topic for further study. 

 

Another point to consider would be to introduce a correlation between the SV process errors 

and the stochastic correlation parameter errors in the Tsay (2005) model. The intuition behind 

this extra parameter would be that the volatility shocks are correlated with the correlation 

shocks. As commonly observed in crisis periods, the markets tend to react similarly when there 

are bad news. The extra parameter can capture this fact by suggesting that when there is a shock 

that increases volatility, there is a shock that increases correlation. 

 

APPENDIX 

 

A.1 Derivatives 

 

Following Jungbacker and Koopman (2006) and Lutkepohl (1996), we obtained the derivatives 

for the bivariate MSV model with diagonal leverage needed for deriving the approximating 

linear model. For the nondiagonal leverage model, it can be easily modified. On the other hand, 

these derivatives are extendable to cases with more than k = 2 series; in the empirical estimation 

part these derivatives are used for k = 3 case. 
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Ht and P*
 as defined in (2.1) and (2.3). Then using (2.9) we can write:  

 tttt QSyHPd ,2
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     

α defined as in (2.11). If we let X = I2
 – SL0 where I2 is a 2 × 2 identity matrix and α1,t be the 

volatilities part of αt then the loglikelihood for (2.10) would be given by: 
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where I4 is a 4×4 identity matrix and  is a Kronecker product. The last expression in the 

equation is equal to: 
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where Z1,1
 = {(P*

)-1diag(Ht
–1/2

yt)}1,1, Z5,1
 = {(P*

)-1diag(Ht
–1/2

yt)}2,1, and  

Z6,2
 = {(P*

)-1diag(Ht
–1/2yt)}2,2 , while the rest of the entries are zeros. 

 

A.2 Relation of MSV Models with Leverage to the MSV_L model of Asai and McAleer 

(2006) 

 

Following the notation used in equations (2.7) and (2.8), we can write the model of Asai and 

McAleer (2006) as follows: 

 ttt Hy 2/1    

 
ttt hh 1
   

with the following distribution of the errors: 
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where P is the correlation matrix of t, L̅
 = diag(λ1σ11

1/2, λ2σ22
1/2,…, λkσkk

1/2) and Qη
 is the covariance 

of t such that Qη
 = {ση,ij}. 

 

The relation between diagonal leverage matrix in Asai and McAleer (2006), L̅, and the non-

diagonal leverage matrix in our MSV with leverage models, L, can be deduced from equations 

(2.7) and (2.8) in the following manner: 
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Notice that Q*
LP*

ꞌ, and P*
LQ*

ꞌ are not diagonal. The assumption used in Asai and McAleer 

(2006) is that Q*
LP*

ꞌ is a diagonal matrix. Hence, as mentioned in the paper, both MSV models 

with diagonal and non-diagonal leverage matrices discussed in this paper offer richer structure 

on the leverage behaviour in the data. 
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